4. Übung Höhere Wahrscheinlichkeitstheorie

1. Let ℓ be a nonnegative positively homogeneous additive functional on

$$
C_{b}^{+}(X)=\left\{f \in C_{b}(X): f \geq 0\right\}
$$

(i.e., $\ell(f+g)=\ell(f)+\ell(g)$ and for $c \geq 0 \ell(c f)=c \ell(f))$. Show that $\ell(f-g)=\ell(f)-\ell(g)$ defines a positive linear functional on $C_{b}(X)$.
2. Prove that a positive linear functional on $C_{b}(X)$ is continuous and that a positive linear functional on $C_{c}(X)$ is continuous iff the associated Radon measure is finite.
3. Assume that X is compact. Show hat a continuous linear functional ℓ on $C(X)$ is positive iff $\ell(1)=\|\ell\|$.
4. Let μ be a finite Radon measure on a metric space X. Show that there is a separable closed subset of X that has full measure.
5. Prove the Lévy-Ottaviani inequality:

Let ξ_{1}, \ldots, ξ_{n} be independent, $a, b>0$, and $S_{n}=\sum_{i=1}^{n} \xi_{i}$. Then

$$
\mathbb{P}\left(\max _{i \leq n}\left|S_{i}\right| \geq a+b\right) \leq \frac{\mathbb{P}\left(\left|S_{n}\right| \geq a\right)}{1-\max _{i \leq n} \mathbb{P}\left(\left|S_{n}-S_{i}\right| \geq b\right)}
$$

