4. Übung Höhere Wahrscheinlichkeitstheorie

1. Let ℓ be a nonnegative positively homogeneous additive functional on

$$C_b^+(X) = \{ f \in C_b(X) : f \ge 0 \}$$

(i.e., $\ell(f+g) = \ell(f) + \ell(g)$ and for $c \ge 0$ $\ell(cf) = c\ell(f)$). Show that $\ell(f-g) = \ell(f) - \ell(g)$ defines a positive linear functional on $C_b(X)$.

- 2. Prove that a positive linear functional on $C_b(X)$ is continuous and that a positive linear functional on $C_c(X)$ is continuous iff the associated Radon measure is finite.
- 3. Assume that X is compact. Show hat a continuous linear functional ℓ on C(X) is positive iff $\ell(1) = ||\ell||$.
- 4. Let μ be a finite Radon measure on a metric space X. Show that there is a separable closed subset of X that has full measure.
- 5. Prove the Lévy-Ottaviani inequality:

Let ξ_1, \ldots, ξ_n be independent, a, b > 0, and $S_n = \sum_{i=1}^n \xi_i$. Then

$$\mathbb{P}(\max_{i \le n} |S_i| \ge a+b) \le \frac{\mathbb{P}(|S_n| \ge a)}{1 - \max_{i \le n} \mathbb{P}(|S_n - S_i| \ge b)}.$$