8. Übung Höhere Wahrscheinlichkeitstheorie

- 1. Which of the well-known Banach spaces (e.g. L_p , ℓ_p , $\mathbf{C}([0,1])$, $\mathfrak{M}([0,1],\mathfrak{B})$, ad libitum expandable, also as far as the underlying spaces are concerned).
- 2. Let μ be a regular finite measure on a Banach space. Prove that there is a separable closed subspace of full measure and for any $\epsilon > 0$ a finite-dimensional subspace E with $\mu(U(E, \epsilon)^C) < \epsilon$.
- 3. Let X be a metric space, \tilde{X} its completion. Show that for a finite measure μ on $\mathfrak{B}(X)$,

$$\tilde{\mu}(A) = \mu(A \cap X)$$

defines a measure on $\mathfrak{B}(\tilde{X})$. If μ is regular, then so is $\tilde{\mu}$, and μ_n converges (weakly) to μ , iff $\tilde{\mu}_n$ converges to $\tilde{\mu}$.

- 4. The set of finite Radon measures is a closed subset (if signed measures are allowed, a closed subspace) of $(\mathfrak{M}, \|.\|_v)$.
- 5. In a metric space X, the point measures δ_x for $x \in X$ are Radon (no na), and $\delta_{x_{\alpha}} \Rightarrow \delta_x$ iff $x_{\alpha} \to x$.