Höhere Wahrscheinlichkeitstheorie Markov Processes

M. Beiglböck, M. Huesmann, S. Källblad

Exercise 1

Assume that S is a finite set, m a reference measure with support S, let Q be a Q-matrix and set $P_t := \exp(tQ)$, $\gamma_t := dP_t/dm$. Derive, discuss, and interpret Kolmogorov forward equations for

- (a) the distribution $\mu_t \sim X_t, t \ge 0$ (of a process corresponding to P_t), given $X_0 \sim \mu_0$.
- (b) $\gamma_t, t \ge 0.$

Exercise 2

Given transition matrices of a time-inhomogenuous markov chain, i.e. matrices $P_{s,t}$, $0 \le s \le t$ such that

- (a) $P_{s,t}P_{t,r} = P_{s,r}$,
- (b) $P_{s,s} = Id$,
- (c) $(s,t) \mapsto P_{s,t}$ is continuous,
- (d) $Q_s := \lim 1/\Delta s [P_{s,s+\Delta s} P_s]$ exists and is continuous in s,

establish a Kolomogorov forward equation.