Exercise 8

In this Exercise we will study the Brownian Motion and relate it to the concepts of Markov properties and Feller processes which we have discussed in class $\11

1 Working on the space (Ω, \mathcal{F}) (where $\Omega:=\{\omega:[0, \infty) \rightarrow \mathbb{R}: \omega$ is càdlàg $\}$ and \mathcal{F} the smallest σ-algebra making $\omega \mapsto \omega(t)$ measurable for each $t \geq 0$), specify the properties required of a measure \mathbb{P}_{x} on this space for the canonical process $X_{t}(\omega)=\omega(t)$ to be a Brownian motion started in x (i.e. effectively just give the definition of Brownian motion).

2 Show that $\left(\mathbb{P}_{x}\right)_{x \in \mathbb{R}}$ given as in [1] (i.e. being the Brownian motion) satisfies the Feller property.

3 Consider the following two filtrations: the (raw) filtration $\mathbb{F}^{0}=\left(\mathcal{F}_{t}^{0}\right)_{t \geq 0}$ where $\mathcal{F}_{t}^{0}=\sigma\left(X_{s}: s \leq t\right)$ and the (right-continuous) filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ where $\mathcal{F}_{t}=\cap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}^{0}$. Consider now the 'first exit time': $\tau(\omega)=\inf \{t \geq$ $\left.0: X_{t}>c\right\}$, for some $c>0$. Argue whether it is a stopping time with respect to both \mathbb{F}^{0} and \mathbb{F}, only either \mathbb{F}^{0} or \mathbb{F} (which one), or none of them.

4 Argue that (the Brownian motion) $\left(\mathbb{P}_{x}\right)_{x \in \mathbb{R}}$ (as given in [1]) satisfies the Markov Property (MP) with respect to the filtration \mathbb{F}^{0}.

5 Argue that (the Brownian motion) $\left(\mathbb{P}_{x}\right)_{x \in \mathbb{R}}$ (as given in [1]) satisfies the Markov Property (MP) with respect to the filtration \mathbb{F}.

Hints:

- Argue that w.l.o.g. it suffices to consider random variables Z of the form

$$
Z=\Pi_{i=1}^{n} f_{i}\left(X_{t_{i}}\right), \quad 0<t_{1}<\ldots<t_{n}, \quad f_{i} \in C(\mathbb{R}) .
$$

- For any $h>0$, introduce a random variable Z^{h} such that $Z=Z^{h} \circ \theta_{h}$. In turn, applying the MP from [4] to Z^{h} (conditioning on \mathcal{F}_{s+h}^{0}), deduce that for any $A \in \mathcal{F}_{s}$

$$
\mathbb{E}_{x}\left[\mathbf{1}_{A} Z \circ \theta_{s}\right]=\mathbb{E}_{x}\left[\mathbf{1}_{A} \mathbb{E}_{X_{s+h}}\left[Z^{h}\right]\right]
$$

- Conclude by verifying that one may pass to the limit on the r.h.s. in the above equality.

In summary, we have shown that (the Brownian Motion) $\left(\left(\mathbb{P}_{x}\right)_{x \in \mathbb{R}},\left(\mathcal{F}_{t}\right)_{t \geq 0}\right)$ is a Feller process. In particular, it thus has the Strong Markov Property (SMP) and in consequence e.g. the reflection principle holds.

[^0]
[^0]: ${ }^{1}$ If you follow the class, please use the definitions provided there. If you do not follow the class, please google for appropriate definitions; if you do not manage to find this, please contact me.

