EXERCISE 8

In this Exercise we will study the Brownian Motion and relate it to the concepts of Markov properties and Feller processes which we have discussed in class¹.

- 1 Working on the space (Ω, \mathcal{F}) (where $\Omega := \{\omega : [0, \infty) \to \mathbb{R} : \omega \text{ is càdlàg}\}$ and \mathcal{F} the smallest σ -algebra making $\omega \mapsto \omega(t)$ measurable for each $t \geq 0$), specify the properties required of a measure \mathbb{P}_x on this space for the canonical process $X_t(\omega) = \omega(t)$ to be a Brownian motion started in x (i.e. effectively just give the definition of Brownian motion).
- 2 Show that $(\mathbb{P}_x)_{x \in \mathbb{R}}$ given as in [1] (i.e. being the Brownian motion) satisfies the Feller property.
- 3 Consider the following two filtrations: the (raw) filtration $\mathbb{F}^0 = (\mathcal{F}^0_t)_{t\geq 0}$ where $\mathcal{F}^0_t = \sigma(X_s : s \leq t)$ and the (right-continuous) filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ where $\mathcal{F}_t = \bigcap_{\varepsilon>0} \mathcal{F}^0_{t+\varepsilon}$. Consider now the 'first exit time': $\tau(\omega) = \inf\{t\geq 0 : X_t > c\}$, for some c > 0. Argue whether it is a stopping time with respect to both \mathbb{F}^0 and \mathbb{F} , only either \mathbb{F}^0 or \mathbb{F} (which one), or none of them.
- 4 Argue that (the Brownian motion) $(\mathbb{P}_x)_{x \in \mathbb{R}}$ (as given in [1]) satisfies the Markov Property (MP) with respect to the filtration \mathbb{F}^0 .
- 5 Argue that (the Brownian motion) $(\mathbb{P}_x)_{x \in \mathbb{R}}$ (as given in [1]) satisfies the Markov Property (MP) with respect to the filtration \mathbb{F} .

Hints:

– Argue that w.l.o.g. it suffices to consider random variables ${\cal Z}$ of the form

 $Z = \prod_{i=1}^{n} f_i(X_{t_i}), \quad 0 < t_1 < \dots < t_n, \ f_i \in C(\mathbb{R}).$

- For any h > 0, introduce a random variable Z^h such that $Z = Z^h \circ \theta_h$. In turn, applying the MP from [4] to Z^h (conditioning on \mathcal{F}^0_{s+h}), deduce that for any $A \in \mathcal{F}_s$

$$\mathbb{E}_{x}\left[\mathbf{1}_{A}Z\circ\theta_{s}\right]=\mathbb{E}_{x}\left|\mathbf{1}_{A}\mathbb{E}_{X_{s+h}}\left|Z^{h}\right|\right|.$$

 Conclude by verifying that one may pass to the limit on the r.h.s. in the above equality.

In summary, we have shown that (the Brownian Motion) $((\mathbb{P}_x)_{x \in \mathbb{R}}, (\mathcal{F}_t)_{t \geq 0})$ is a Feller process. In particular, it thus has the Strong Markov Property (SMP) and in consequence e.g. the reflection principle holds.

¹If you follow the class, please use the definitions provided there. If you do not follow the class, please google for appropriate definitions; if you do not manage to find this, please contact me.