Höhere WAHRSCHEINLICHKEITSTHEORIE

http://mstoch.tuwien.ac.at/lv-guide

VO: S. Källblad / K. Felsenstein

WS 2017

ÜBUNGSBLATT 6

31) Der Zählprozess N_t hat identisch verteilte und unabhängige Zwischenankunftszeiten $T_i \geq 0$ mit Sprungzeiten $\tau_k = \sum_{i=1}^k T_i$ und $N_t = \sum_{k=1}^\infty \mathbb{1}_{[\tau_k \leq t]}$. Wenn $\mathbb{E}T_i \in (0, \infty)$, dann gilt fast sicher $\lim_{t \to \infty} N_t = \infty$ und

$$\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{\mathbb{E}T}.$$

- **32)** Für $\lambda_i > 0, i = 1, \ldots, k$ und $\lambda = \sum_{i=1}^k \lambda_i$ seien stochastische Größen Z_i mit Werten in \mathbb{N} und $Z = \sum_{i=1}^k Z_i$ definiert. Man zeige, (Z_1, \ldots, Z_k) ist genau dann unabhängig Poissonverteilt, $Z_i \sim P_{\lambda_i}$, wenn $Z \sim P_{\lambda}$ Poisson-verteilt ist und (Z_1, \ldots, Z_k) bedingt unter Z = k Multinomial-verteilt $M_{k;p_1,\ldots,p_k}$ mit $p_i = \lambda_i/\lambda$ ist.
- 33) $T_i, i=1,\ldots,k$ seien die Zwischenankunftszeiten eines Poissonprozess N_t mit Rate λ und τ_k die Zeit bis zum k-ten Ereignis. Man bestimme die Verteilung und den Erwartungswert sowohl der minimalen als auch der maximalen Zwischenankunftszeit, wenn $\tau_k=T$.
- 34) Ein Compound Poissonprocess X(t) ist über einen Poissonprozess $N_t, t > 0$ mit Rate $\lambda > 0$ und einer unabhängigen und identisch verteilten stochastischen Folge Y_i durch

$$X_t = \sum_{i=1}^{N_t} Y_i$$

definiert. Man zeige, dass X_t stationäre und unabhängige Zuwächse besitzt. Es soll für X(t) Mittel $\mathbb{E}X_t$ und Varianz und die Momenterzeugende Funktion bestimmt werden, wenn auch Y_i eine Varianz und eine wohldefinierte Momenterzeugende Funktion besitzt.

- **35)** N_t sei ein inhomogener Poissonprozess mit Intensität $\lambda(t)$ und $\Lambda(t) := \int_0^t \lambda(s) \, ds$. Welche der folgenden Prozesse sind Martingale ?
 - a) $N_t \Lambda(t)$,
 - $\mathbf{b)} \qquad (N_t \Lambda(t))^2 \Lambda(t) ,$
 - c) $\exp[sN_t \Lambda(t)(\exp(s) 1)]$ für $s \in \mathbb{R}$.
- **36)** Der Poissonsche Punktprozess N(.) in $(\mathbb{R}^2, \mathfrak{B}^2, \lambda^2)$ hat Rate $\nu > 0$, somit gilt für die Anzahl der Ereignisse in $B \in \mathfrak{B}^2$

$$N(B) \sim P_{\mu} \quad \text{mit } \mu = \nu. \lambda^{2}(B) .$$

Für einen festen Punkt $x \in \mathbb{R}^2$ sei X der euklidische Abstand von x zu dem nächstgelegenen Punkt(-Ereignis) von N(.). Man bestimme die Verteilung und Erwartung von X.