1. Übung Höhere Wahrscheinlichkeitstheorie WS18

 $(S_n, n \ge 0)$ sei ein symmetrischer random walk,

$$L_n = |\{i \le n : S_i = 0\}|$$

seine lokale Zeit (wir zählen jetzt doch eine Nullstelle bei n mit), $M_n = \max_{i \le n} S_i$, $\bar{M}_n = \max_{i \le n} |S_i|$, $X_i = S_i - S_{i-1}$.

1. Zeigen Sie die diskrete Version der Tanaka-Formel:

$$|S_n| = \sum_{i=1}^n \operatorname{sig}(S_{i-1}) X_i + L_{n-1}.$$

- 2. Bestimmen Sie die asymptotische Verteilung von L_n/\sqrt{n} .
- 3. N_n sei die letzte Nullstelle von S_i vor n. Bestimmen Sie die Verteilung von N_n und die Grenzverteilung von N_n/n für $n\to\infty$
- 4. Y_n sei der Ort des letzten Maximums vor n (also

$$Y_n = \max\{i \le n : S_i = M_n\}).$$

Bestimmen Sie die Verteilung von Y_n .

- 5. Bestimmen Sie die gemeinsame Verteilung von M_n und S_n .
- 6. Bestimmen Sie die gemeinsame Verteilung von \bar{M}_n und S_n .
- 7. Bestimmen Sie die gemeinsame Verteilung von L_n und $|S_n|$.