Höhere WAHRSCHEINLICHKEITSTHEORIE

http://mstoch.tuwien.ac.at/lv-guide

VO: K. Felsenstein / Z. Saffer

WS 2019

ÜBUNGSBLATT 3

- 12) Die Familien (X_t, \mathfrak{A}_t) und (Y_t, \mathfrak{C}_t) seien Martingale. Man begründe, dass $Z_t := X_t + Y_t$ ein an \mathfrak{A}_t adaptiertes Martingal ist, wenn die Filtrationen $\mathfrak{A}_t = \mathfrak{C}_t$ gleich sind. Es soll ein Beispiel gefunden werden, dass Z_t kein Martingal (adaptiert an die kanonische Filtration) ist, wenn \mathfrak{A}_t und \mathfrak{C}_t verschieden sind.
- 13) Einfache symmetrische Irrfahrt X_n , also $X_n = \sum_{i=1}^n Z_i$ mit dem Startwert $X_0 \equiv x_0, x_0 < 1$ und $x_0 \in \mathbb{Z}$ konstant und $Z_i, i \geq 1$ unabhängig und identisch alternativ verteilt mit $P(Z = -1) = P(Z = 1) = \frac{1}{2}$. Sei die stochastische Folge

$$\tau_m := \inf\{k \in \mathbb{N} | X_k = m\} \quad \text{für } m \in \mathbb{N} .$$

- a) Man zeige, dass $\tau_1, \tau_2, ...$ eine geordnete Folge von Stoppzeiten ist.
- b) Man zeige, dass $\tau_1, \tau_2 \tau_1, \tau_3 \tau_2, \tau_4 \tau_3, \dots$ eine iid Folge mit der Verteilung von τ_1 ist.
- c) Man überlege sich, dass

$$\mathbf{P}(\tau_1 = k - 1 | X_0 = -1) = \mathbf{P}(\tau_2 = k - 1 | X_0 = 0).$$

- 14) Unter den Annahmen des letzten Beispiels soll die erzeugende Funktion $\phi(t) := \mathbb{E}t^{\tau}$ für die stochastische Größe $\tau := \tau_1$ bestimmt werden.
 - a) Man zeige, dass

$$\phi(t) = \frac{1}{t} - \sqrt{\frac{1}{t^2} - 1}$$

die erzeugende Funktion von τ_1 ist.

- b) Wie ist die erzeugende Funktion von τ_m für m > 1?
- c) Wie kann aus $\phi(t)$ (wie bei jeder erzeugende Funktion einer Verteilung auf \mathbb{N}) die Punktwahrscheinlichkeit $\mathbf{P}(\tau=k)$ bzw. die Momente bestimmt werden?
- 15) Für die asymmetrische Irrfahrt S_n mit $S_n = \sum_{i=1}^n X_i$ für unabhängige identisch verteilte X_i

$$P[X_i = 1] = 1 - P[X_i = -1]$$

für $p \neq \frac{1}{2}$, q = 1 - p, mit $S_0 = 0$. Es sei $\tau := \min\{n | S_n \notin (-a, b)\}$ für $a, b \in \mathbb{N}$. Man zeige, dass $\mathbb{E}\tau < \infty$ und dass

$$\left(\frac{q}{p}\right)^{S_n}$$
 und $S_n - n(p-q)$

Martingale sind.

16) Unter Verwendung der Martingaleigenschaften zeige man für die Irrfahrt aus dem letzten Beispiel

$$\mathbf{P}(S_{\tau} = b) = \frac{1 - (p/q)^a}{(q/p)^b - (p/q)^a}$$

und bestimme $\mathbb{E} \tau$.