ASSIGNMENT FOR THE COURSE THEORETICAL COMPUTER SCIENCE THEORY OF ALGORITHMS

(1) Prove that $\{a b, a b a\}^{*}=\{\varepsilon\} \cup\{a\}\{b a, b a a\}^{*}\{b, b a\}$ (i.e. prove 2 inclusions: " \subseteq " and " \supseteq ").
(2) Build a DFA which recognizes the language $\{0,1\}^{*}$ in alphabet $\mathcal{A}=\{0,1,2\}$.
(3) Build a DFA which recognizes
$L=\left\{w \mid w \in\{0,1\}^{*}\right.$ and the difference between the number of 0 's and 1 's in w is even in $\mathcal{A}=\{0,1\}$.
(4) Build a DFA for $L=\{w \mid$ in w before a always comes $b\}$ in $\mathcal{A}=\{a, b\}$.
(5) Describe the language recognized by the following DFA:

(6) Describe the language recognized by the following NFA:

(7) Using the algorithm considered in the lecture which allows one to build a DFA from a NFA, build a DFA for the language from Exercise (6).
(8) Construct a regular grammar generating $L=\{w \mid w \neq \varepsilon$ and the number of 1 's divides by 3$\}$.
(9) Prove that every finite language not containing ε is generated by a regular grammar.
(10) Prove that $L=\left\{w \in\{a, b\}^{+} \mid w\right.$ has equal number of occurrences of a and $\left.b\right\}$ is not regular.
(11) Prove that $L=\left\{w w^{R} \mid w \in\{a, b\}^{+}\right\}$is not regular.
(12) Build a PDA recognizing $L=\left\{a^{n} b^{n} \mid n \in \omega\right\}$.
(13) Describe the language generated by the following CFG $\Gamma=\langle V, T, P, S\rangle$, where $V=$ $\{S, A, B\}, T=\{a, b\}, P=\{S \rightarrow a B, S \rightarrow b A, A \rightarrow a, A \rightarrow a S, A \rightarrow B A A, B \rightarrow b, B \rightarrow$ $b S, B \rightarrow A B B\}$.
(14) Construct a CFG which generates
$L=\left\{x c^{n} \mid n \in \omega, x \in\{a, b\}^{*}\right.$ and the number of a 's is n or the number of b 's is $\left.n\right\}$
(15) Provide an example of context-free languages L_{1}, L_{2} such that $L_{1} \backslash L_{2}$ is not context-free.
(16) Prove that $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not context-free.
(17) Prove that $L=\left\{a^{i} b^{j} c^{k} \mid i<j<k\right\}$ is not context-free.
(18) Prove that $f(x)=x$! (where $0!=1$) is primitive recursive.
(19) Prove that the function $\operatorname{rest}(x, y)$ which outputs the reminder of division x by y (where $\operatorname{rest}(x, 0)=x)$ is primitive recursive.
(20) Prove that $f(x)=[\sqrt{x}]$ is primitive recursive.
(21) Describe the function which is the result of application of the minimization operator to $g(x, y, z)=|z y-x|$.
(22) Prove that the function f such that $f(n)$ is the n-th Fibonacci number, is primitive recursive.
(23) Construct a Turing machine which performs transposition: $01^{x} q_{1} 01^{y} 0 \Rightarrow 01^{y} q_{0} 01^{x} 0$ without building new cells to the left and to the right end of the tape.
(24) Construct a Turing machine which performs duplication: $q_{1} 01^{x} 0 \Rightarrow q_{0} 01^{x} 01^{x} 0$.
(25) Construct a Turing machine which correctly computes the function $f(x, y)=x-y$ (in particular, if $x<y$ the machine does not halt).

A set A is computable if its characteristic function χ_{A} is computable (where $\chi_{A}(x)=1$ if $x \in A, \chi_{A}=0$ if $x \notin A$).
(26) Prove that if $f(x)$ is computable then its graph Γ_{f} is a computable set.
(27) Prove that if $f(x)$ is a monotone computable function then its range is a computable set.
(28) Prove that if $f(x, y)$ is computable and $g(x)=\mu y[f(x, y)=0]$ then the graph of $g \Gamma_{g}$ is computable.
(29) Prove that the set $A=\{x \in \omega \mid x$ is a perfect number $\}$ is computable (a number x is perfect if the sum of all its devisors that are less than x equals x).
(30) Prove that it is impossible to get the functions $s(x)=x+1$ and $f(x)=2 x$ from the basic functions o and I_{m}^{n} using the operators of composition and primitive recursion.
(31) Let $e=a_{0}, a_{1} a_{2} a_{2} \ldots$ be a representation of the number e (Euler's number 2,718281 \ldots) as an infinite decimal fraction. Prove that $f(n)=a_{n}$ is computable.
(32) Prove that the problem 2-SAT is in \mathcal{P}.
(33) Let $L_{1} \in \mathcal{P}, L_{2}$ be $\mathcal{N} \mathcal{P}$-complete and $L_{3} \notin \mathcal{N} \mathcal{P}$. Characterize the languages $L_{1} \cap L_{2}$, $L_{1} \cup L_{2}, L_{2} c L_{3}$ (where c is a symbol not in L_{2} or L_{3}), $\overline{L_{3}}$ using the following expressions:
(a) definitely in \mathcal{P};
(b) definitely in $\mathcal{N} \mathcal{P}$ (but perhaps not in \mathcal{P} and perhaps not $\mathcal{N} \mathcal{P}$-complete);
(c) definitely $N P$-complete;
(d) definitely not in $\mathcal{N} \mathcal{P}$.

Explain your choice.
(34) Decide whether \mathcal{P} is closed under union, intersection, concatenation and star. Give a proof of your choice.
(35) Decide whether $\mathcal{N P}$ is closed under union, intersection, concatenation and star. Give a proof of your choice.
(36) Build a nondeterministic Turing machine which recognizes $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$.

