- 1. Eine isoliert aufgehängte Metallkugel $(r_1 = 10 \text{ cm})$ wird in Luft solange aufgeladen, bis die Potentialdifferenz zur Umgebung 500 V beträgt.
 - a) Welche Ladung ist dazu notwendig? (*Lösung*: $Q = 5.56 \cdot 10^{-9} \text{ C}$)

Anschließend wird diese Kugel mit einer zweiten ebenfalls isoliert aufgehängten Metallkugel ($r_2 = 5$ cm) durch einen Draht kurzzeitig verbunden, sodaß sich die Ladung auf beide Körper aufteilen kann.

- **b)** Wie groß sind nun die einzelnen Ladungen und die jeweiligen Potentiale? (*Lösung*: $Q_1 = (2Q)/3$, $Q_2 = Q/3$, $\varphi_1 = \varphi_2 = 333,5 \text{ V}$)
- **2.** Gegeben sei das Vektorfeld $\vec{A} = (-y, x, 0)$.
 - a) Berechnen Sie $\nabla \times \vec{A}$ und das Linienintergral $\oint \vec{A} \cdot d\vec{s}$ entlang der Kurve $x^2 + y^2 = 1$, z = 0.
 - **b**) Überprüfen Sie den Satz von Stokes durch Berechnung des Flächenintegrals von $\nabla \times \vec{A}$ über die von der Kurve eingeschlossene Fläche.
- Gegeben sind zwei **Punktladungen** Q_1 und Q_2 . Es gelte: $|Q_1| > |Q_2|$. Weiters seien die **Vorzeichen** von Q_1 und Q_2 **entgegengesetzt**. Q_1 befinde sich im **Ursprung**, Q_2 liege im **Punkt** x = b.
 - a) Man bestimme jene Punkte x_1 und x_2 auf der x-Achse, in denen das **Potential null** ist.
 - b) Man zeige, dass auf der Oberfläche einer Kugel, welche die Punkte x1 und x2 beinhaltet und deren Mittelpunkt auf der x Achse liegt, das Potential dieser Ladungsanordnung ebenfalls gleich null ist.
- **4.** Thomsonsches Atommodell: Eine positive Ladung q sei homogen über eine Vollkugel mit dem Radius R verteilt. In der Mitte der Kugel befinde sich eine punktförmigen negative Ladung -q.
 - a) Berechnen Sie das **Elektrische Feld** \vec{E} und das **Potential** ϕ dieser Ladungsanordnung im gesamten Raum.

(*Lösung*: Potential im inneren der Kugel:
$$\varphi(r) = \frac{q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{3}{2 \cdot R} - \frac{r^2}{2 \cdot R^3} - \frac{1}{r} \right)$$

b) Berechnen Sie die Energie W, welche nötig ist, um die negative Punktladung aus dem Zentrum der Kugel ins Unendliche zu befördern, zunächst allgemein und dann für R = 0,53 Å (1. Bohr'scher Radius) und q = 1,602·10⁻¹⁹ C (Elementarladung).
(Lösung: W = 6,53·10⁻¹⁸ J)

<u>Hinweis</u>: Benutzen Sie das Superpositionsprinzip und das Gauss'sche Gesetz der Elektrostatik.

Bitte Seite wenden!

- 5. Eigenschaften des Plattenkondensators: Ein Plattenkondensator soll so dimensioniert werden, dass seine Kapazität $C_I = 100 \text{ pF}$ betrage.
 - a) Man berechne die dafür nötige **Plattenfläche** A_I , wenn der Plattenabstand $d_I = 0,1$ mm beträgt. (*Lösung*: $A_I = 11,29$ cm²)

Der Kondensator wird nun auf $U_I = 100 \text{ V}$ aufgeladen.

b) Wie groß ist die **Feldstärke** E zwischen den Kondensatorplatten? (*Lösung*: $E = 10^6 \text{ V/m}$)

Der geladene Kondensator wird von der Spannungsquelle getrennt und ein zweiter Plattenkondensator (Plattenfläche $A_2 = 50$ cm²) wird parallelgeschaltet. Man beobachted eine Reduktion der Spannung auf $U_2 = 30$ V.

- c) Wie groß ist die **Kapazität** C_2 des zweiten Kondensators und wie groß ist der **Plattenabstand** d_2 ? (*Lösung*: $C_2 = 233.3$ pF, $d_2 = 0.19$ mm)
- **d**) Berechnen Sie die in den beiden Anordnung **gespeicherte Energie**. Sind die gespeicherten Energien vor und nach der Parallelschaltung gleich? Falls nicht: wie kommt der **Energieverlust** zustande?
- **6.** Influenz: Zwischen zwei planparallelen leitenden Platten (Fläche A, Abstand d), welche leitend verbunden sind (sich also auf gleichem Potential befinden) befindet sich eine mit der Gesamtladung Q aufgeladene leitende Platte gleicher Fläche und sehr geringer, aber endlicher, Dicke. Diese hat den Abstand d_I von einer der beiden erstgenannten Platten und ist parallel und kongruent zu diesen.
 - a) Man fertige eine **Skizze** der Anordnung an und berechne allgemein, in welche **Flächenladungen** σ_1 und σ_2 sich Q aufteilt.
 - b) Man berechne σ_I und σ_2 für $A = 10 \text{ cm}^2$, d = 2 cm, $d_I = 5 \text{ mm}$ und $Q = 4 \cdot 10^{-4} \text{ C}$. (*Lösung*: $\sigma_I = 3 \cdot 10^{-5} \text{ C/cm}^2$ $\sigma_2 = \cdot 10^{-5} \text{ C/cm}^2$)

<u>Hinweis</u>: Benutzen Sie die Ladungserhaltung und das Gauss'sche Gesetz der Elektrostatik. Beachten Sie, dass das E-Feld konservativ ist.