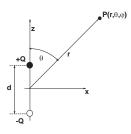

1. Kirchhoff'sche Regeln: Gegeben ist die skizzierte Widerstandskonfiguration; gesucht ist der Gesamtwiderstand R_g des Widerstandsnetzwerkes.

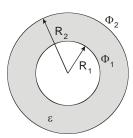
- a) Lässt sich das Widerstandsnetzwerk auf eine Kombination von in Serie und parallel geschalteten Widerständen reduzieren?
- b) Falls das nicht der Fall ist, verwenden Sie die Kirchhoff'schen Regeln und das Ohm'sche Gesetz zur Bestimmung von R_g . (<u>Lösung</u>: $R_g = 7/5$ R)

<u>Hinweis</u>: Bei der Lösung des Gleichungssystemes zeigt sich, dass $I_1 = I_4$ und $I_2 = I_3$.

2. Dreidimensionale Widerstandsanordnung: Ein Drahtnetzwerk bildet einen **Ikosaeder** (siehe Skizze), und die Drähte werden mit **gleich großen Widerständen** *R* (nicht eingezeichnet) bestückt.



Die Knoten des Ikosaeders bilden die leitfähigen Verbindungen zwischen den Widerständen. Zwischen den genau gegenüberliegenden Knoten A und B wird eine Spannung U_0 angelegt.


- a) Berechnen Sie den Gesamtwiderstand R_{ges} zwischen den Knoten A und B sowie den Gesamtstrom I_{ges} zwische A und B. (<u>Lösung</u>: $R_{ges} = R/2$, $I_{ges} = 2 \cdot U_0 / R$)
- **b)** Bestimmen Sie den **Strom** I_{Aa} , welcher durch den zwischen den **Knoten** A und a liegenden Widerstand fliesst. ($\underline{L\ddot{o}sung}$: $I_{Aa} = 2 \cdot U_0 / (5 \cdot R)$)
- c) Bestimmen Sie weiters die Spannung U_{ab} , welche am Widerstand zwischen den **Knoten** a und b abfällt. (*Lösung*: $U_{ab} = U_0 / 5$)
- d) Welche Widerstände im Netzwerk werden sich erwärmen, d. h. an welchen wird Energie dissipiert?

Bitte Seite wenden!

3. Potential und Feld eines Dipols: Gegeben sei ein **parallel zur z-Achse** orientierter Dipol. Dieser besteht aus zwei **gleich großen Ladungen entgegengesetzten Vorzeichens** mit dem **Abstand** *d* (Skizze):

- a) Berechnen Sie das **elektrostatische Potential** U des **Dipols** in **Kugelkoordinaten im Aufpunkt** $P(r,\theta,\varphi)$ in der in der **Näherung** r >> d. ($\underline{L\ddot{o}sung}$: $U = \frac{p \cdot cos \theta}{4 \cdot \pi \cdot \varepsilon_0 \cdot r^2}$)
- **b**) Berechnen Sie daraus in gleicher Näherung das **elektrische Feld** in Kugelkoordinaten mit Hilfe der Darstellung des Gradientenoperators in Kugelkoordinaten, $\vec{\nabla} = \left(\frac{\partial}{\partial r}, \frac{1}{r} \cdot \frac{\partial}{\partial \theta}, \frac{1}{r \cdot \sin \vartheta} \cdot \frac{\partial}{\partial \phi}\right)$.
- c) Berechnen Sie Betrag und Richtung des Feldes für $\theta = 0^{\circ}$, 45° , 90° , 135° , 180° für r = R = const.. Zeichnen Sie die Feldvektoren in einer Skizze ein.
- **4. Ein Plattenkondensator** mit dem Plattenabstand **0,1 cm** ist vollständig mit einem Dielektrikum der Dielektrizitätszahl $\varepsilon_r = 7$ gefüllt. Welche Fläche müssen die Platten haben, damit der Kondensator eine Kapazität von **150 pF** hat? (*Lösung*: A = 24,2 cm²)
- 5. Die Platten eines **Kondensators** sind durch eine Porzellanscheibe mit **0,5 cm** Dicke und einer gleich dicken Luftschicht voneinander getrennt.
 - a) Berechnen Sie die elektrischen Feldstärken in Luft und Porzellan (ε_r = 6), wenn die Spannung zwischen den Kondensatorplatten 10 kV beträgt. (<u>Lösung</u>: 1714,3 kVm⁻¹, 285,7 kVm⁻¹)
 - b) Wie groß sind die Spannungen in der Luft- und in der Porzellanschicht? (*Lösung*: 8571 V, 1429 V)
- **6.** Koaxialkabel mit Leckstrom: Ein offenes Koaxialkabel mit den Leiterradien R_1 und R_2 und der Länge L (siehe Skizze) wird an die konstante Potentialdifferenz $U = \Phi_1 \Phi_2$ angeschlossen.

Berechnen Sie:

- a) die Menge der **statischen Ladung** Q, die sich im Kabel befindet (Dielektrizitätskonstante des Dielektrikums zwischen den Leitern ϵ). Im weiteren wird gleichzeitig ein (extrem geringer) **Strom** I zwischen den beiden Leitern gemessen. Berechnen Sie
- b) den **spezifischen Widerstand** ρ des Dielektrikums, welchen den Raum zwischen den beiden Leitern ausfüllt.
- c) Berechnen Sie **Q** und ρ für $R_1 = 3$ mm, $R_2 = 5$ mm, U = 50 V, $\varepsilon = 2$, L = 1 m und $I = 2 \mu A$. (*Lösung*: $Q = 1,089 \cdot 10^{-8}$ C, $\rho = 308$ M Ω m)