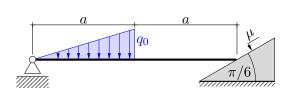

Technische Mechanik für TPH 22. November 2023 Name: Matrikelnummer: 1 2 3 Σ Abgegebene Blätter: Angabe +

1 Bewegungsgleichungen

Eine Punktmasse M wird in einem Rohr (Masse m, Länge 2a, Trägheitsmoment I_{A} um den Lagerpunkt A) reibungsfrei geführt. Zwischen Masse und Rohrende wirkt eine Feder (Federsteifigkeit c_1 , ungedehnte Länge $\ell_0 = a$). Das Rohr ist im Punkt A frei drehbar gelagert und am anderen Ende mit einem Feder-Dämpfer-System (Parameter: c_2 , k) verbunden. Das Feder-Dämpfer-

System bewegt sich mit dem Rohrende mit und wirkt daher stets vertikal; die Feder c_2 ist entspannt in der skizzierten Anordnung.


Gegeben: Länge a; Trägheiten m, M, I_A ; Federsteifigkeiten c_1 , c_2 ; Dämpferkonstante k

Gesucht:

- 1. Freiheitsgrade und Lagekoordinaten
- 2. Federkräfte und Dämpferkraft in den gewählten Lagekoordinaten
- 3. Schwerpunktssatz für die geführte Punktmasse M
- 4. Drallsatz für das Rohr um A

Anmerkung: zeichnen Sie die Lagekoordinaten in einer aussagekräftigen Skizze ein!

2 Statisches Gleichgewicht und Schnittgrößen

Der skizzierte Balken mit Länge 2a ist an einem Ende horizontal verschieblich gelagert und liegt am anderen Ende auf einem Dreieck mit Steigung $\pi/6$ auf. Der Kontakt mit dem Dreieck ist rau mit dem Haftreibungskoeffizienten μ . Über eine Hälfte des Balkens wirkt eine Dreieckslast mit maximalem Betrag q_0 vertikal nach unten.

Gegeben: Längemaß a, maximaler Betrag q_0 der Dreieckslast

Gesucht:

- 1. Alle Auflagerreaktionen und Reaktionskräfte
- 2. Der mindestens erforderliche Haftgrenzkoeffizient μ für statisches Gleichgewicht
- 3. Die Verläufe der verallgemeinerten Schnittgrößen Q(x) und M(x)

Anmerkungen: das System ist statisch bestimmt; führen Sie ein geeignetes Koordinatensystem zur Berechnung der Schnittgrößen ein.

	Technische Mechanik für TPH	22. November 2023		
	Name:			
3 Theoriefragen				
	Die 10 Theoriefragen sind als Multiple-Choice-Single-Answer gestellt (nur EINE richtige Antwort pro Frage). Für jerichtig beantwortete Frage gibt es einen Punkt. Für jede falsch beantwortete Frage gibt es 0 Punkte. Ihre Antworten EINDEUTIG ersichtlich sein, andernfalls gibt es 0 Punkte auf die Frage. Beachten Sie, dass die Theoriefrag keineswegs weiterverbreitet werden dürfen. Dies ist gesetzlich untersagt (siehe https://htu.at/rechteundpflichten).			
1.	. Ein mechanisches System besteht aus zwei Massenp Steifigkeit c und ungedehnter Länge ℓ_0 verbunden rungen trifft auf die in der Feder übertragene Kraf	sind. Welche der genannten Kategorisie-		
	$\hfill\Box$ Die Federkraft ist eine nicht konservative Kraft.			
	$\hfill\Box$ Die Federkraft ist eine Reaktionskraft.			
	\Box Die Federkraft ist eine innere, eingeprägte Kraft.			
	$\hfill\Box$ Die Federkraft ist eine äußere, eingeprägte Kraft.			
2.	2. Betrachten Sie das skizzierte mechanische System. Abschnitte ist definitiv eine Pendelstütze?	Welcher der durchnummerierten geraden		
	S_1 S_3	S_4 S_2 q_0		
	\square Abschnitt S_1 \square Abschnitt S_2	\square Abschnitt S_3 \square Abschnitt S_4		
3.	3. Welche Eigenschaften treffen auf den Tensor der M	lassenträgheitsmomente I zu?		
	$\hfill\Box$ Der Tensor I ist reell und indefinit.			
	\square Der Tensor I ist symmetrisch. Seine Eigenwe	rte sind rein imaginär.		

- \square Der Tensor I ist positiv-semidefinit, reell und symmetrisch.
- \square Der Tensor I ist reell und schiefsymmetrisch.

4. Ein Punkt führt eine einachsige Bewegung mit der Beschleunigung $a(x) = a_0 x/\ell$ aus. Im Ursprung ist die Geschwindigkeit null: v(x=0)=0. Berechnen Sie die Geschwindigkeit v = v(x).

$$\square \ v(x) = \sqrt{\frac{2a_0x^2}{\ell}} \qquad \qquad \square \ v(x) = \frac{a_0x^2}{2\ell} \qquad \qquad \square \ v(x) = \sqrt{\frac{a_0x^2}{\ell}} \qquad \qquad \square \ v(x) = \sqrt{\frac{a_0x^2}{2\ell}} \qquad \qquad$$

5. Ein Punkt bewegt sich entlang einer Kurve gemäß r(t). Welche Schnelligkeit \dot{s} besitzt dieser Punkt?

$$\Box \ \dot{s} = \left| rac{\mathrm{d} m{r}}{\mathrm{d} s}
ight| \qquad \qquad \Box \ \dot{s} = rac{\mathrm{d} m{r}}{\mathrm{d} s} \qquad \qquad \Box \ \dot{s} = |\dot{m{r}}| \qquad \qquad \Box \ \dot{s} = \dot{m{r}}$$

	Technische Mechanik für TPH	22. November 2023		
	Name:			
	Matrikelnummer:			
6.	Im Rahmen der Relativkinematik kann die Beschleunigung eines Punktes P des starren Körpers bezogen auf die Bewegung eines Bezugspunktes A geschrieben werden als:			
	$m{a}_{P} = m{a}_{A,f} + \dot{m{\omega}}_f imes m{r}_{PA} + m{\omega}_f imes (m{\omega}_f imes m{r}_{PA}) + 2m{\omega}_f imes m{v}_r + m{a}_r$			
	Durch welche Terme ist die sogenannte Coriolisbeschleunigung a_{c} gegeben?			
	\square $oldsymbol{a}_{c} = 2oldsymbol{\omega}_f imes oldsymbol{v}_r + oldsymbol{a}_r$			
	$\square \ oldsymbol{a}_c = oldsymbol{\omega}_f imes (oldsymbol{\omega}_f imes oldsymbol{r}_PA)$			
	\square $oldsymbol{a_c} = 2oldsymbol{\omega}_f imes oldsymbol{v}_r$			
	$\square \ oldsymbol{a}_{c} = oldsymbol{a}_{A,f} + \dot{oldsymbol{\omega}}_f imes oldsymbol{r}_{PA}$			
7.	Gegeben ist eine Starrkörperbewegung $x(\xi) = x_0 + \mathbf{B}\xi$ mit einem konstanten Vektor x_0 und einem Rotationstensor \mathbf{B} . Wie lauten der Deformationsgradiententensor \mathbf{F} und der Strecktensor \mathbf{U} für diese Deformation? Es bezeichne \mathbf{E} den Einheitstensor.			
	$\square \mathbf{F} = \mathbf{B}^T \mathbf{B}, \ \mathbf{U} = \boldsymbol{x}_0 \qquad \square \mathbf{F} = \boldsymbol{x}_0 \mathbf{E}, \ \mathbf{U} = 0 \qquad \square \mathbf{F} = \mathbf{B}, \ \mathbf{U} = \mathbf{E}$	$\square \ \mathbf{F} = \mathbf{E}, \ \mathbf{U} = \mathbf{B}$		
8.	Wie ist der Green Verzerrungstensor ${\bf G}$ mit dem linearisierten Verknüpft, wenn die Annahmen der linearisierten Elastizitätstheorie zutr den Einheitstensor.	=		
	$\square \; \mathbf{G} = \mathbf{E} - oldsymbol{arepsilon} \qquad \qquad \square \; \mathbf{G} = oldsymbol{arepsilon} - rac{1}{2} oldsymbol{arepsilon}^T oldsymbol{arepsilon} \qquad \qquad \square \; \mathbf{G} = oldsymbol{arepsilon}$	$\square \; \mathbf{G} = oldsymbol{arepsilon} + rac{1}{2} oldsymbol{arepsilon}^T oldsymbol{arepsilon}$		
9.	Die Linearisierung eines mechanischen Systems um eine Gleichgewichtslage hat folgende Eigenwerte ergeben: $\lambda_1=-2+3i, \lambda_2=-i$			
	Welche Aussage zur Stabilität dieser Lage trifft zu?			
	☐ Die Gleichgewichtslage ist asymptotisch stabil.			
	□ Die Gleichgewichtslage ist instabil.			
	□ Es liegt ein kritischer Fall vor. Die Stabilität kann nicht beurteilt werden.			
	□ Die Gleichgewichtslage ist stabil.			

 ${\bf 10.}$ Ermitteln Sie für den ebenen Spannungstensor in kartesischen Koordinaten gegeben durch:

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & -2 \\ -2 & 0 \end{bmatrix}$$

die Schubspannungskomponente σ_{mn} für die orthogonalen Richtungen $\boldsymbol{m}=[1/2,\sqrt{3}/2]^T$ und $\boldsymbol{n}=[-\sqrt{3}/2,1/2]^T$.

$$\square \ \sigma_{mn} = -2 \qquad \square \ \sigma_{mn} = 3/4 + \sqrt{3} \qquad \square \ \sigma_{mn} = 1 - \sqrt{3}/4 \qquad \square \ \sigma_{mn} = 1/4 - \sqrt{3}$$