- **1.** Fluoreszenzdetektor: Ein Laserstrahl einer Leistung von $P_0 = 100$ mW und einer Wellenlänge von $\lambda = 488$ nm durchlaufe eine Gasabsorptionszelle mit einem Absorptionskoeffizienten von $\alpha = 10^{-6}$ cm⁻¹:
 - a) Wie viele Fuoreszenzphotonen werden pro cm Weglänge in einer Sekunde emittiert, wenn jedes absorbierte Laserphoton die Emision eines Fluoreszuenzphotons zur Folge hat? (*Lösung*: $N = 2,45 \cdot 10^{11}$ *Photonen/s*)
 - b) Wie gross ist der **Ausgangsstrom** I_A eines Photodetektors, welcher die in einen Raumwinkel von $\Omega = 0,2$ Sterad emittierte **Fuoreszenzstrahlung** erfasst? Die Detektorkathode habe einen **Quantenwirkungsgrad von** $\eta = 20$ %, die **Stromverstärkung** des Detektors sei $G = 10^6$ (*Lösung*: $I_A = 0,12$ mA)
- Verringerung der Dopplerbreite durch Kollimation: Aus einem Dampfbehälter mit der Temperatur T = 500 K tritt ein kollimierter Molekularstrahl von Natriumatomen mit einem Kollimationswinkel ε = 2° aus. Ein Laserstrahl regt die Na-Atome senkrecht zum Molekularstrahl an. Dabei wird Na-D Licht emittiert.
 - a) Wie gross ist die **restliche Dopplerbreite** δv_D ? (*Lösung*: $\delta v_D = 59.3 \ MHz$)
 - b) Wie gross darf ϵ sein, damit die Hyperfeinstruktur des $3^2P_{1/2}$ -Zustandes ($\Delta \nu = 190$ MHz) noch aufgelöst werden kann? (*Lösung*: $\epsilon = 6,42^{\circ}$)

Hinweis: Alle nötigen Informationen über das Na-Atom können der Literatur entnommen werden.

- **3. Lichtbremse**: Ein Strahl von **Natriumatomen** möge anfänglich eine Geschwindigkeit in *x*-Richtung von $v_x = 700$ m/s haben. Bei Absorption eines **Photons auf der D**₂-Linie wird ein Atom jeweils um einen Betrag Δv_x abgebremst. Die **Absorptionsrate** der Photonen pro Atom betrage $R = 3 \cdot 10^7 \text{ s}^{-1}$.
 - a) Wie gross ist Δv_x , wenn man annimmt, dass die Bremswirkung nur in x- Richtung erfolgt? (*Lösung*: $\Delta v_x = 3$ cm/s)
 - b) Welche Zeit T vergeht, bis ein Atom des Strahles vollständig zum Stillstand gekommen ist? (<u>Lösung</u>: $T = 778 \,\mu s$)
 - c) Wie gross sind Bremsbeschleunigung a und Abbremsweg d? (Lösung: a = 91743 g, d = 27.2 cm)

Hinweis: Alle nötigen Informationen über das Na-Atom können der Literatur entnommen werden.

4. Laserspektroskopie von Molekülzuständen: Wie gross muss der zeitliche Abstand Δt zweier Femtosekunden-Laserpulse sein, welche ein Na₂-Molekül in den Schwingungszustand n=1 des $2^1\Sigma_u$ -Zustandes ($\omega_e=125~\text{cm}^{-1}$) anregen, damit der zweite Puls das Molekül im gleichen Kernabstand vorfindet, wie der erste Puls? (*Lösung*: $\Delta t=177.8~fs$)