- 1. Eine Raumsonde untersucht die von einem sonnenähnlichen Stern im Abstand $r = 1,2 \cdot 10^8$ km emittierte Strahlung. Der Spektraldetektor misst das Maximum der Spektralverteilung bei 475 nm. Das 2,21 m² große Sonnensegel registriert 3,11 kW Strahlungsleistung bei senkrechter Bestrahlung. Welchen Durchmesser d hat der Stern unter der Annahme, dass es sich um eine idealen schwarzen Strahler handelt? ($\underline{L\ddot{o}sung}$: $d_{Stern} = 1,02 \cdot 10^6$ km)
- 2. Strahlungsgesetze im Haushalt: Eine Glühbirne der elektrischen Leistung P = 100 W wird mit der Spannung U = 230 V betrieben. Der im Inneren der evakuierten Glühbirne befindliche Wolframdraht (spezifischer Widerstand $\rho_{el} = 5,65$ μΩcm, Dichte $\rho = 19$ gcm⁻³, spezifische Wärmekapazität c = 154,6 Jkg⁻¹K⁻¹) wird durch den ihn durchfließenden Strom auf 3000 K erhitzt.
 - a) Wie dick ist der Draht? (*Lösung*: $d = 9.7 \mu m$)
 - b) Wie lange dauert es, bis der Draht nach abschalten des Stromes auf **1000°C bzw.** auf **20°C** abgekühlt ist? In welchem der beiden Fälle wird die berechnete Zeit **unterschätzt** sein? (*Lösung*: auf 1000°C: 0,019 s; auf 20°C: 1,67 s)
 - c) Welche Spannung $U_{\rm m}$ ist nötig, damit der Draht durchbrennt? Was ist die maximale Stromdichte j_m [A/m²]? (Die Schmelztemperatur von Wolfram beträgt $T_{\rm m}=3137$ K); (*Lösung*: $U_m=255,3$ V, $j_m=6,5$ mA/ μ m²)

<u>Hinweis</u>: Vernachlässigen Sie alle Strahlungsflüsse die aus der Umgebung auf den Draht auftreffen; alle Materialkenngrössen seien als temperaturunabhängig angenommen, auch wenn diese Näherung für den spezifischen Widerstand problematisch ist ($\rho_{el, 20*C} = 5,65 \ \mu\Omega$ cm, ($\rho_{el, 600*C} = 21,5 \ \mu\Omega$ cm, Daten aus: Handbook of Chemistry and Physics, 74th ed. (1994) CRC Press Boca Raton, Florida).

3. Photoelektrischer Effekt:

- a) Man bestimme die Grenzwellenlänge, ab der Elektronen aus einem Festkörper mit 4,55 eV Austrittsarbeit freigesetzt werden können. (*Lösung*: $\lambda_g = 272,46$ nm)
- b) Unter der Annahme, dass die auf den Festkörper auftreffende Lichtintensität $8 \cdot 10^{-6} \, \text{Wcm}^{-2}$ beträgt und innerhalb der Grenzwellenlänge vollkommen von den im Festkörper befindlichen Elektronen (Elektronendichte $\rho_e \approx 10^{23} \, \text{cm}^{-3}$) aufgenommen wird, berechne man klassisch die mittlere Energieaufnahme eines Elektrons.
- c) Wie lange dauert es, bis nach diesem klassischen Ansatz ein Elektron aus dem gegebenen Festkörper emittiert wird? (*Lösung*: $\Delta t = 2,48 \cdot 10^5$ s)
- **4. Mechanische Effekte von Licht:** Wir betrachten ein ²³**Na Atom** und seine Wechselwirkung mit **nahe resonantem** Laserlicht:

Na:

Massenzahl: A=23Wellenlänge $5S_{1/2} - 5P_{3/2}$ $\lambda=589,2$ nm Lebensdauer $\tau=16,25$ ns

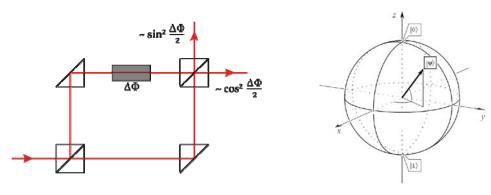
a) wie groß ist der **Rückstossimpuls** der von einem Photon übertragen wird? Wie groß die Änderung der Geschwindigkeit des Na Atoms. (*Lösung*: $p = 1,125 \cdot 10^{-27} \text{ kg·m·s}^{-1}$, $v = 29,5 \text{ mm·s}^{-1}$)

 $\Gamma=1/\tau$

- b) wie groß ist die **Energie**, die ein Na Atom, welches vor dem Stoss in Ruhe ist, nach einem Photonrückstoss hat. Geben Sie diese Energie in verschiedenen Einheiten an (J, eV, äquivalente Temperatur) (*Lösung*: $E = 1,03 \cdot 10^{-10}$ eV)
- c) was ist die **maximale Kraft** (Beschleunigung), die ein Laserstrahl auf das Na Atom ausüben kann *Hinweis:* die maximale Streurate $R_{max} = \Gamma/2 = 1/(2\tau)$. (<u>Lösung</u>: $F = 3,462 \cdot 10^{-20}$ N)
- **d)** In welcher Zeit (über welche Strecke) kann ein thermisches Na Atom ($E_{kin} \sim k_B T T = 300 \text{ K}$) mit dieser maximalen Kraft **abgebremst** werden. (*Lösung*: s = 0,12 m)
- e) Wie viele Photonen können gestreut werden bis der **Dopplereffekt** die Frequenz des Laserlichtes um eine Linienbreite Γ verschiebt. (*Lösung*: N = 1230)

- 5. Interferometrie und Zweizustands-Systeme: Superposition und Bloch-Kugel: Beschreiben Sie ein Mach-Zehnder Interferometer durch den Weg den ein Quantenzustand auf der Blochkugel zurücklegt. Hinweis: Ein symmetrischer Strahlteiler entspricht einer Rotation um die x-Achse
 - a) Wie lässt sich auf der Blochkugel ein Phasenschub im Interferometer beschreiben?
 - **b**) Wie sieht der Weg auf der Blochkugel aus für einem Phasenschub $\Delta\Phi$ von

$$\Delta\Phi = \frac{\pi}{2}$$


$$\Delta\Phi = -\frac{\pi}{2}$$

$$\Delta\Phi=\pi$$

$$\Delta\Phi=2\cdot\pi$$

$$\Delta\Phi = -17,25 \cdot \pi$$

6. Darstellung einer Interferometersequenz auf der Blochkugel.

- a) Das Teilchen befindet sich zu Beginn im Zustand $|0\rangle$. Der erste Strahlteiler erzeugt die folgende Superposition: $\Psi=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Dies entspricht einer Rotation um die x-Achse der Blochkugel. Im Interferometer erfährt der Zustand $|0\rangle$ eine Phasenschub $\Delta \varphi$. Betrachte folgende 3 Phasenschübe: $\Delta \varphi_1 = \pi/2$, $\Delta \varphi_2 = -3\pi/4$ und $\Delta \varphi_3 = -\pi$. Der 2. Strahlteiler hat genau die gleiche Funktion wie der 1. Strahlteiler (eine Rotation um die x-Achse). Zeichne den Zustandsvektor und jede seiner Bewegungen auf der Blochkugel ein und gib den Endzustand an.
- b) Ein nachgeschalteter Detektor misst den Endzustand in der Basis $|0\rangle$ und $|1\rangle$. GIb für alle 3 Phasenschübe die Wahrscheinlichkeiten P_0 und P_1 , dass am Ende der Zustand $|0\rangle$ bzw. $|1\rangle$ gemessen wird, an.