1. Zwei Zweizustands-Systeme – Verschränkung und Superposition: Die Bell-Zustände

$$\left|\Phi^{\pm}\right\rangle = \frac{1}{\sqrt{2}} \cdot \left[\left|0\right\rangle_{I} \left|0\right\rangle_{2} \pm \left|I\right\rangle_{I} \left|I\right\rangle_{2}\right]$$

$$\left|\Psi^{\pm}\right\rangle = \frac{1}{\sqrt{2}} \cdot \left[\left|I\right\rangle_{I} \left|0\right\rangle_{2} \pm \left|0\right\rangle_{I} \left|I\right\rangle_{2}\right]$$

stellen eine **vollständige Basis** der Zustände für die beiden Zweizustands-Systeme dar. Stellen sie folgende Zustände in der Basis der Bellzustände dar:

$$|0\rangle_{I}|0\rangle_{2}, |1\rangle_{I}|1\rangle_{2}, |1\rangle_{I}|0\rangle_{2}, |0\rangle_{I}|1\rangle_{2}$$

$$\frac{1}{2} \cdot |0\rangle_{I} |0\rangle_{2} + \frac{\sqrt{3}}{2} \cdot |1\rangle_{I} |1\rangle_{2}$$

$$\frac{\sqrt{3}}{2} \cdot |0\rangle_{1} |1\rangle_{2} - \frac{1}{2} \cdot |1\rangle_{1} |0\rangle_{2}$$

2. Verschränkung: Welche der fünf im Folgenden gegebenen Zustände ist verschränkt. Begründen Sie Ihre Antwort:

$$\Psi_a = \frac{1}{\sqrt{2}} \cdot \left(\left| 01 \right\rangle + e^{-\frac{i \cdot \pi}{4}} \left| 10 \right\rangle \right)$$

□ ja □ nein

$$\Psi_b \, = \frac{1}{\sqrt{2}} \cdot \left(\left| 1 \right\rangle - i \right| 0 \right) \right) \cdot \frac{1}{\sqrt{2}} \cdot \left(\left| 1 \right\rangle + \left| 0 \right\rangle \right)$$

□ ja □ nein

$$\Psi_c = \left\lceil \frac{1}{2} \left| 11 \right\rangle + \frac{1}{2} \left| 01 \right\rangle + \frac{1}{2} \left| 10 \right\rangle + \frac{1}{2} \left| 00 \right\rangle \right\rceil$$

□ ja □ nein

$$\Psi_{d} = \left[\frac{\sqrt{3}}{2} \left| 00 \right\rangle - \frac{1}{2} \cdot e^{i\frac{3\pi}{4}} \left| 10 \right\rangle \right]$$

□ ja □ nein

$$\Psi_{_{e}}=\left\lceil\frac{1}{2}\left|11\right\rangle+\frac{1}{2}\left|01\right\rangle-\frac{1}{2}\left|10\right\rangle+\frac{1}{2}\left|00\right\rangle\right\rceil$$

□ ja □ nein

Bitte Seite wenden!

- **3.** Materiewellen: Man bestimme die De-Broglie-Wellenlänge von
 - a) einem Elektron mit der kinetischen Energie $E_{kin} = 1$ eV, (*Lösung*: $\lambda = 1,23$ nm)
 - **b**) einem **Elektron** mit der kinetischen Energie $E_{kin} = 100 \text{ keV}$, (<u>Lösung</u>: $\lambda = 0.0037 \text{ nm}$)
 - c) einem C₆₀-Molekül mit der Geschwindigkeit $v = 10 \text{ cms}^{-1}$, (*Lösung*: $\lambda = 5,52 \text{ nm}$)
 - d) einem Molekül der Verbindung $C_{48}H_{24}F_{51}P$ mit der Geschwindigkeit $v = 10^3$ ms⁻¹. (*Lösung*: $\lambda = 2.5 \cdot 10^{-13}$ m)
 - d) einem Auto mit 2000 kg Masse, welches sich mit 60 kmh⁻¹ bewegt. (*Lösung*: $\lambda = 1.99 \cdot 10^{-38}$ m)
 - f) Wie schnell muß dich ein Mensch (*m* = 80 kg) bewegen, damit seine Materiewellenlänge der **Planck-Länge** entspricht? (*Lösung*: *v* = 0,51 m/s)
- **4. Gauß-glockenförmiges Wellenpaket:** Ein freies Teilchen kann als Wellenpaket in Form einer Gaußschen Glockenkurve dargestellt werden. Die Wellenfunktion zum Zeitpunkt t=0, $\psi(x,0)$, für ein solches Wellenpaket lautet: $\Psi(x,0)=\frac{1}{\sqrt{\sqrt{2\pi}\delta_0}}\exp\left(-\frac{(x-x_0)^2}{4\delta_0^2}+\frac{\mathrm{i}}{\hbar}\,p_0x\right)$. Dabei sind x_0 und p_0 Anfangsort und -impuls des Teilchens.
 - a) Man berechne die Wahrscheinlichkeitsdichte $|\Psi(x,0)|^2$.
 - **b)** Man zeige, dass $\int_{0}^{\infty} |\Psi(x,0)|^2 dx = 1$.
 - c) Man zeige, dass $\int_{-\infty}^{\infty} \Psi^*(x,0)x\Psi(x,0)dx = \langle \Psi|\hat{x}|\Psi\rangle = x_0$. Diese Beziehung ist der E**rwartungswert** $\langle x\rangle$ des Ortes für das Teilchen.