- **1.** Kenngrößen idealer Gase: Wir betrachten 1 m³ Luft bei **Normalbedingungen** (T = 273,15 K, $p = 10^5$ Pa).
 - a) Wie viele Moleküle enthält 1 m³ Luft? (*Lösung*: $N = 2,65 \cdot 10^{25}$ Moleküle)
 - **b)** Wie groß ist der **mittlere Abstand der Moleküle**? (*Lösung*: d = 3,35 nm)
 - c) Wie groß ist der **Raumausfüllungsfaktor** η , wenn man annimmt, dass alle Moleküle durch harte Kugeln mit dem Radius r = 0.1 nm beschrieben werden können? (*Lösung*: $\eta = 1.11 \cdot 10^{-4}$)
 - **d)** Wie groß ist die **mittlere freie Weglänge** Λ ? (*Lösung*: $\Lambda = 212$ nm)
 - e) Welche Werte nehmen die obigen Größen für einen Druck von **300 bar** an (*T* bleibt gleich)? (*Lösung*: $N = 7.96 \cdot 10^{27}$ Moleküle; d = 0.501 nm; $\eta = 0.033$; $\Lambda = 0.7$ nm)
 - f) Welche Werte nehmen die obigen Größen für eine **Temperatur von 400** °C an (p bleibt gleich)? (*Lösung*: $N = 1,08 \cdot 10^{25}$ Moleküle; d = 4,5 nm; $\eta = 4,52 \cdot 10^{-5}$; $\Lambda = 520$ nm)

2. Man berechne

- a) die mittlere kinetische Energie (<u>Lösung</u>: $\overline{E} = 1.02 \cdot 10^{-20} \text{ J} = 0.064 \text{ eV}$)
- **b**) die **mittlere Geschwindigkeit** ($\underline{L\ddot{o}sung}$: $\overline{v} = 2383 \text{ kmh}^{-1}$)

von **Stickstoffmolekülen** bei einer Temperatur von 22 °C mit Hilfe des Gleichverteilungssatzes.

- 3. Die Anzahl von Atomen oder Molekülen in makroskopischen Volumina und Massen.
 - → Wie viele Atome, beziehungsweise Moleküle enthalten
 - a) $10 \text{ g} {}_{6}^{12}\text{C}$, (*Lösung*: $N = 5.02 \cdot 10^{23} \text{ Atome}$)
 - **b)** 1 dm³ Helium bei einem Druck von 10^5 Pa und einer Temperatur von 0 °C, (*Lösung*: $N = 2,65 \cdot 10^{22}$ Atome)
 - c) 1 kg Stickstoff (N₂), (<u>Lösung</u>: $N = 2,15 \cdot 10^{25}$ Moleküle)
 - d) Eine Stahlflasche mit 20 dm³ O₂-Gas bei 200 bar Druck und 22 °C (dies entspricht dem Druck in einer typischen Gasflasche)? (*Lösung*: $N = 9.82 \cdot 10^{25}$ Moleküle)
- **4. Zweiatomiges Gas:** Die Moleküle eines zweiatomigen Gases weisen bei einem Druck p = 1 mbar und einer Temperatur 9 = 15 °C eine mittlere Geschwindigkeit von 1887 m/s auf.
 - a) Um welches Gas handelt es sich?.
 - b) Die Rotationsfrequenz der Gasmoleküle um deren Schwerpunkt beträgt **6,6 · 10**¹² **Hz**. Berechnen Sie mit Hilfe des **Gleichverteilungssatzes** den Bindungsabstand. *d.* (*Lösung*: *d* = 74 pm)
 - c) Wieviele Umdrehungen n macht ein Molekül in der Zeit zwischen zwei Stössen? (d kann als effektiver Durchmesser des Moleküls gesehen werden, das Gas befindet sich im thermischen Gleichgewicht!) ($\underline{L\ddot{o}sung}$: $n = 5.72 \cdot 10^6$)

<u>Hinweis</u>: Betrachten Sie das Molekül als zwei Punktmassen, die durch einen starren, masselosen Stab der Länge d verbunden sind.

Bitte Seite wenden!

- 5. Ermittlung der Boltzmann-Konstante und der Avogadro-Zahl aus der Dichteverteilung von Kolloidteilchen in Wasser (Versuch von Perrin): In einer Suspension von Kolloidteilchen in Wasser werden in der Höhe h_1 im Durchschnitt $n_1 = 52$ Teilchen detektiert, in der Höhe $h_2 = h_1 + 80 \,\mu\text{m}$ im Durchschnitt $n_2 = 11$ Teilchen. Die Massendichte der Teilchen betrage $\rho_T = 1,194 \, \text{kgdm}^{-3}$ und ihr Radius $r = 0,212 \, \mu\text{m}$.
 - → Man berechne aus diesen Daten
 - a) die Masse m der Teilchen, sowie deren scheinbare Masse m^* unter Berücksichtigung des Auftriebes in Wasser, (*Lösung*: $m = 4.77 \cdot 10^{-17}$ kg; $m^* = 7.74 \cdot 10^{-18}$ kg)
 - b) die **Boltzmann-** und die **Avogadro-Konstante**, ($\underline{L\ddot{o}sung}$: $k_B = 1,325 \cdot 10^{-23} \text{ JK}^{-1}$; $N_A = 6,28 \cdot 10^{23} \text{ mol}^{-1}$)
 - c) die **Molmasse** der Teilchen. (*Lösung*: $M = 2,99 \cdot 10^7 \text{ kgmol}^{-1}$)
 - d) Wie viele Teilchen müsste die Experimentatorin in h_2 beobachten, um den exakten Wert $k_B = 1,38 \cdot 10^{-23} \text{ JK}^{-1}$ zu erhalten? (*Lösung*: 11,7, also etwa 12)

<u>Hinweis</u>: Die Dichte von Wasser kann aus der Literatur ermittelt werden. Die Temperatur im Labor betrage 22 °C.

- **6.** Die Zustandsgleichung für **ein Mol** eines **Van der Waals-Gases** lautet: $\left(p + \frac{a}{V^2}\right)(V b) = RT$. Bei p_k , V_k und T_k (**kritischer Druck**, **kritisches Volumen**, **kritische Temperatur**) besitzt die Zustandsfunktion $p = p(V, T_k)$ einen **Sattelpunkt**.
 - a) Wie lautet die Zustandsfunktion?
 - b) Unter Zuhilfenahme des Faktums, dass die Zustandsfunktion bei $p_k = p_k(V_k, T_k)$ einen Sattelpunkt aufweist, drücke man die Konstanten a und b der Zustandsfunktion als **Funktionen von p_k**, V_k und T_k aus. (*Lösung*: $a = (9/8)RT_kV_k$, $b = V_k/3$)
 - c) Was ist die **physikalische Bedeutung der Konstanten** *a* und *b*? (Dimensionsbetrachtung!)