Name:

Tutoriumsgruppe: Matr. Nr.: Anzahl der abgegebenen Blätter (inkl. Deckblatt):

Mathematische Methoden der Theoretischen Physik (UE, 135.044)

2. Test, 20. 1. 2017, 2016W

1 Rechenbeispiele (30 Punkte)

(6 Punkte pro Frage)

Berechnen Sie die folgenden Integrale.

1)
$$\int_{-\infty}^{\infty} \delta(1-2x)dx$$

2)
$$\int_{-\infty}^{\infty} H(1-x^2)dx$$
 ($H(x)$: Heaviside-Funktion)

3)
$$\int_{0}^{\infty} x^4 e^{-x^2} dx$$

4)
$$\int_{-\infty}^{\infty} f'(x) \sin x \, dx$$
 $\left(f(x) = \begin{cases} \sin|x| & (|x| \le \pi/2) \\ 0 & (|x| > \pi/2) \end{cases} \right)$

Die Differentialgleichung (1-x)y'' + 2x(x-1)y' + 2y = 0 wird in die Sturm-Liouville'sche Gestalt $\left(\frac{d}{dx}\left[p(x)\frac{d}{dx}\right] + q(x)\right)y(x) = 0$ transformiert.

5) Bestimmen Sie p(x) und q(x).

Hinweise: $\Gamma(z+1)=z\Gamma(z),\ z!=\Gamma(z+1),\ \Gamma(1/2)=\sqrt{\pi},\ \Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt$

BITTE WENDEN

2 Greensche Funktion (35 Punkte)

a) Finden Sie eine Greensche Funktion G(t,t'), die die inhomogene Differentialgleichung $\mathcal{L}_t G(t,t') = \delta(t-t')$ erfüllt. Der Operator \mathcal{L}_t ist durch

$$\mathcal{L}_t y(t) = \left(\frac{d^2}{dt^2} + 2\gamma \frac{d}{dt} + \gamma^2 + \Omega^2\right) y(t)$$

 $(\gamma > 0)$ definiert.

b) Lösen Sie die Differentialgleichung $\mathcal{L}_t y(t) = f(t)$ für $f(t) = e^{i\omega_0 t} H(t)$ mit den Randbedingungen y(t=0) = 0 und y'(t=0) = 0. (H(t): Heaviside-Funktion)

3 Differentialgleichung (35 Punkte)

a) Führen Sie den Separationsansatz der Differentialgleichung

$$y^{2} \left(\partial_{x}^{2} - \partial_{x}\right) \Phi(x, y) + \frac{1}{x} \left(y^{2} \partial_{x} + \partial_{y}^{2}\right) \Phi(x, y) = 0$$

in (x, y)-Koordinaten und zeigen Sie, dass die Differentialgleichung in der x-Koordinate durch $xu''(x) + (1-x)u'(x) + \lambda u(x) = 0$ gegeben ist $(\lambda : \text{Konstante})$. Schreiben Sie auch die Differentialgleichung in der y-Koordinate an.

- b) Verwenden Sie den Ansatz $u(x) = \sum_{n=0}^{\infty} a_n x^{n+\sigma}$ $(a_0 \neq 0)$ und bestimmen Sie den charakteristischen Exponent σ .
- c) Schreiben Sie die Rekursionsgleichung der Koeffizienten a_n an.
- d) Finden Sie eine Lösung der Differentialgleichung in der x-Koordinate für $\lambda = 2$.