Name:

Tutoriumsgruppe: Matr. Nr.:
Anzahl der abgegebenen Blätter (inkl. Deckblatt):

Mathematische Methoden der Theoretischen Physik (UE, 135.044)

1. Test, 1. 12. 2017, 2017W

1 Rechenbeispiele (30 Punkte)

- (6 Punkte pro Frage)
- a) Vereinfachen und berechnen Sie

$$\partial_i \frac{1}{\sqrt{x_j x_j}}$$

für eine dreidimensionale, orthonormale, euklidische Metrik.

b) Berechnen Sie

$$\delta^i{}_i\delta^j{}_j - \delta^i{}_j\delta^j{}_k\delta^k{}_i$$

in d-Dimensionen.

c) Berechnen Sie die dualen Vektoren zur Basis

$$\mathbf{e}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

- d) Berechnen Sie $\varepsilon_{ijk}a^i{}_1a^j{}_2a^k{}_3$ wobei $a^i{}_j=g^{ik}g_{kj}$. ($\mathbf{g}=(g_{kj})$ und $\mathbf{g}^*=(g^{ik})$ sind die metrischen Tensoren eines Koordinatensystems in 3-Dimensionen.)
- e) Berechnen Sie für einen Einheitskreis $C = \{z = e^{i\theta} \mid 0 \le \theta < 2\pi\}$

$$\oint_C \frac{2z}{4z+1} dz.$$

2 Spektraltheorem (35 Punkte)

a) Berechnen Sie die Eigenwerte, λ_1 und λ_2 ($\lambda_2 > \lambda_1$), der Matrix

$$\mathbf{A} = \frac{1}{6} \left(\begin{array}{cc} 2 & 2 \\ 2 & -1 \end{array} \right)$$

- **b)** Berechnen Sie die Projektoren \mathbf{E}_i (i = 1, 2) auf den Eigenvektoren \mathbf{v}_i der Matrix **A** (bzw. auf die Eigenräume mit den Eigenvektoren \mathbf{v}_i).
- c) Berechnen Sie die Elemente der Matrix $\mathbf{B} = e^{\mathbf{A}}$.
- d) Berechnen Sie den Kommutator [A, B].

3 Lokale Transformation (35 Punkte)

In einer kartesischen Basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ ist eine infinitesimale Änderung des Vektors $\mathbf{x} = x^i \mathbf{e}_i$ durch $\mathbf{dx} = dx^i \mathbf{e}_i$ gegeben.

- a) Mit den Polarkoordinaten $(x'^1, x'^2) = (r, \theta)$ und der entsprechenden Basis $\{\mathbf{e}_1', \mathbf{e}_2'\}$ wird die infinitesimale Änderung in die Form $\mathbf{dx} = dx'^i \mathbf{e}_i'$ umgeschrieben. Berechnen Sie die Transformationsmatrix \mathbf{S} zwischen den Basisvektoren wobei $\mathbf{S} = (s^j{}_i)$ durch $\mathbf{e}_i' = \mathbf{e}_j s^j{}_i$ definiert ist. Die Koordinatentransformation ist durch $(x^1, x^2) = (r \cos \theta, r \sin \theta)$ gegeben.
- b) Berechnen Sie die metrischen Tensoren $\mathbf{g}' = (g'_{ij})$ und $\mathbf{g}'^* = (g'^{ij})$ der Polarko-ordinaten.
- c) Berechnen Sie die Länge $L = \oint_{C_1} ds$ einer Kurve $C_1 = \{(r = a, \theta = 2\pi t^2) | 0 \le t \le 1\}$ wobei a eine positive Konstante ist. (Die Integration muss in den Polarko-ordinaten durchgeführt werden.)
- d) Berechnen Sie für ein Vektorfeld $\mathbf{w} = \sin^2 \theta \mathbf{e}_1' r^{-2} \cos^2 \theta \mathbf{e}_2'$ und eine Kurve $C_2 = \{(r,\theta)|r=3, 0 \leq \theta \leq 2\pi\}$ das Integral

$$\oint_{C_2} \mathbf{w} \cdot d\mathbf{s} \,.$$