3. Tutorium für 3.11.2017

3.1 Rechenbeispiele

- a) Gegeben seien 2 Vektoren $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ und $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ in einem kartesischen Koordinatensystem. Berechne $\mathbf{E_a}^*\mathbf{b}$ wobei \mathbf{a}^* ein zu \mathbf{a} orthogonaler Vektor ist und $\mathbf{E_a}^*$ der zugehörige Projektor ist.
- b) Berechne die Fäche F des von ${\bf a}$ und ${\bf b}$ aufgespannten Parallelogramms und zeige $F = \det \left(\begin{array}{cc} {\bf a} & {\bf b} \end{array} \right)$.
- c) Gegeben seien 3 dreidimensionalen Vektoren, \mathbf{a} , \mathbf{b} und \mathbf{c} in einem kartesischen Koordinatensystem. Schreibe in Indexschreibweise das Volumen V des von den 3 Vektoren aufgespannten Parallelepipeds und zeige $V = \det \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix}$.
- d) Zeige $\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} \delta_{im}\delta_{jl}$ durch repräsentatives Einsetzen von Zahlen in die Indizes (Einsteinsche Summenkonvention beachten).
- e) Zeige, dass für Vektoren \vec{a} , \vec{b} in einem dreidimensionalen kartesischen Koordinatensystem gilt: $\left(\vec{a}\cdot\vec{b}\right)^2+|\vec{a}\times\vec{b}|^2=|\vec{a}|^2|\vec{b}|^2$.
- f) Zeige, dass für Vektoren \vec{a} , \vec{b} , \vec{c} in einem dreidimensionalen kartesischen Koordinatensystem gilt: $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{b} \cdot \vec{c}) \vec{a}$.

3.2 Reziprokes Gitter

Gegeben sei ein Kristallgitter mit Basis $\mathcal{B} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$. Die Basisvektoren des reziproken Gitters \mathbf{b}^1 , \mathbf{b}^2 , \mathbf{b}^3 sind einfach die Basisvektoren des Dualraumes \mathcal{B}^* , d.h. $\{\mathbf{b}^1, \mathbf{b}^2, \mathbf{b}^3\} = \{\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3\}$.

- a) Schreibe das Volumen der primitiven Einheitszelle des Kristallgitters an. (Die Einheitszelle ist das von den Basisvektoren $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ gebildete Parallelepiped.)
- b) Bestimme die Basisvektoren \mathbf{b}^1 , \mathbf{b}^2 , \mathbf{b}^3 des reziproken Gitters.
- Hinweis: Zuerst finde einen Vektor \mathbf{v}^i , der orthogonal zu den beiden Vektoren \mathbf{a}_j und \mathbf{a}_k $(j \neq i, k \neq i)$ ist, und dann normiere den Vektor $\mathbf{b}^i = C\mathbf{v}^i$, sodass die Bedingung $\mathbf{b}^i \cdot \mathbf{a}_i = 1$ erfüllt wird.
- c) Berechne das Volumen der primitiven Einheitszelle des reziproken Gitters.
- d) Zeige, dass das reziproke Gitter des reziproken Gitters wieder aus den ursprünglichen Basisvektoren besteht.

3.3 Spektraltheorem

Gegeben sei eine Differentialgleichung

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t)$$

wobei

$$\mathbf{A} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

für den Vektor $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$ in einem dreidimensionalen kartesischen

Koordinatensystem.

- a) Berechne die Eigenwerte λ_i und die Eigenvektoren \mathbf{e}_i (i=1,2,3) der Matrix A und zeige, dass die Eigenvektoren orthogonal zueinander sind.
- b) \mathbf{E}_i seien die Projektoren auf die Eigenvektoren \mathbf{e}_i (bzw. auf die Eigenräume mit den Eigenvektoren e_i). Zeige, dass sich die Matrix **A** in der spektralen Form $\mathbf{A} = \sum_{i=1}^{3} \lambda_i \mathbf{E}_i$ schreiben lässt.
- c) Schreibe $\overline{\mathbf{A}}^{n}$ in der spektralen Form (d.h. $\mathbf{A}^{n} = \sum_{i=1}^{3} \alpha_{i} \mathbf{E}_{i}$). d) Zeige, dass gilt $\exp(\mathbf{A}t) = \sum_{i=1}^{3} \exp(\lambda_{i}t)\mathbf{E}_{i}$.
- e) Der Vektor wird in der Eigenbasis mit $\mathbf{x}(t) = \sum_{i=1}^{3} x_i'(t)\mathbf{e}_i$ dargestellt. Schreibe die Differentialgleichungen für $x_i'(t)$ an und löse die Gleichung. Zeige, dass gilt $\mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}(0)$.

Ankreuzbar: 1a-c, 1d-f, 2ab, 2cd, 3ab, 3c-e