5. Tutorium für 17.11.2017

5.1 Tensoren

- a) Betrachte eine orthonormale Basis $B = \{\mathbf{e}_1, \mathbf{e}_2\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ und eine nicht-orthogonale Basis $B' = \{\mathbf{f}_1, \mathbf{f}_2\} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$. Schreibe die Transformationsmatrix **S**, wobei $\mathbf{f}_i = s^j{}_i \mathbf{e}_i$.
- b) Die Komponenten eines kovarianten Tensors zweiter Stufe A bezüglich der dualen Basis zur orthonormalen Basis B lauten $A_{11} = 0$, $A_{12} = 1$, $A_{21} = 0$, $A_{22}=0$. Wie lauten die Komponenten A'_{ij} des Tensors A bezüglich der dualen Basis zur nicht-orthogonalen Basis B'?
- c) Berechne die metrischen Tensoren g_{ij}^{\prime} und $g^{\prime ij}$ der nicht-orthogonalen Basis B'.
- d) Zeige, dass gilt $A'^{ij}(A'_{ii} A'_{ij}) = A^{ij}(A_{ji} A_{ij}).$

5.2 Lokale Transformation

Betrachte eine infinitesimale Änderung $\mathbf{dx} = dx^i \mathbf{e}_i$ des Vektors $\mathbf{x} = x^i \mathbf{e}_i$ wobei \mathbf{e}_1 , \mathbf{e}_2 und \mathbf{e}_3 die kartesischen Basisvektoren sind. Eine lokale Transformation ist die linearisierte Basistransformation der infinitesimalen Änderung, d.h. $\mathbf{dx} = dx^i \mathbf{e}_i = dx'^i \mathbf{e}_i'$. Beantworte die folgenden Fragen für die Transformation zu den Zylinderkoordinaten $x'^1 = \rho$, $x'^2 = \theta$, $x'^3 = z$. Die Transformation zwischen kartesischen Koordinaten und Zylinderkoordinaten ist gegeben durch

$$x^{1}(r,\theta,\phi) = \rho\cos\theta, \ x^{2}(r,\theta,\phi) = \rho\sin\theta, \ x^{3}(r,\theta,\phi) = z.$$

- a) Schreibe die Transformationsmatrix **S** der Basisvektoren, wobei $\mathbf{e}'_i = s^j{}_i\mathbf{e}_j$.
- b) Schreibe die Transformationsmatrix ${\bf D}$ der Differentialoperatoren, wobei $\frac{\partial}{\partial x^{\prime i}} = d^j{}_i \frac{\partial}{\partial x^j}$ und zeige, dass $\frac{\partial}{\partial x^{\prime i}}$ einen kovarianten Vektor formt. (Anmerkung: Die Elemente eines kovarianten Vektors werden mit dem unten

stehenden Index $\frac{\partial}{\partial x'^i} = \partial'_i$ geschrieben)

- c) Berechne die Elemente g'_{ij} und g'^{ij} der metrischen Tensoren der Zylinderko-
- d) Schreibe die Länge der infinitesimalen Änderung $ds = \sqrt{dx^i dx_i}$ in die Zylinderkoordinaten (ρ, θ, z) um.
- e) Berechne die Länge $L = \int_C ds$ der Helix $C = \{(\rho, \theta, z) | \rho = \rho_0, \theta = 2\pi t, z = 0\}$ $ht, 0 \le t \le n$ } wobei ρ_0 , h und n Konstanten sind.
- $2\pi, 0 \le z \le h$. Berechne das Oberflächenelement dF (in Vektorform) des Zylinders F. (Das Oberflächenelement $d\mathbf{F}$ steht senkrecht auf die Fläche Fund sein Betrag entspricht der Größe des infinitesimalen Flächenstücks.)
- g) Schreibe das Volumenelement dv = dxdydz in die Zylinderkoordinaten (ρ, θ, z) um (d.h. berechne α in $dxdydz = \alpha d\rho d\theta dz$).

5.3 Gaußsche und Stokessche Integralsatz

Betrachte ein Vektorfeld $\mathbf{w} = y\mathbf{e}_x + x\mathbf{e}_y + z^2\mathbf{e}_z$ im Volumen V zwischen einem Paraboloid $z = x^2 + y^2$ und einem Ebene z = 1, d.h. $V = \{(x, y, z) | z \ge x^2 + y^2, z \le 1\}$. F ist die Oberfläche des Volumens, das aus der Deckfläche $F_1 = \{(x, y, z) | x^2 + y^2 \le 1, z = 1\}$ und dem Paraboloid $F_2 = \{(x, y, z) | x^2 + y^2 = z, z \le 1\}$ besteht.

- a) Berechne das Volumenintegral $\int_V \operatorname{div} \mathbf{w} dv$.
- b) Schreibe das Oberflächenelement $d\mathbf{f}_1$ an und berechne das Integral $\int_{F_1} \mathbf{w} \cdot d\mathbf{f}_1$.
- c) Schreibe das Oberflächenelement $d\mathbf{f}_2$ an und berechne das Integral $\int_{F_2} \mathbf{w} \cdot d\mathbf{f}_2$. Überprüfe, dass der gaußsche Integralsatz gilt.

Betrachte ein Vektorfeld $\mathbf{b} = z^2 \mathbf{e}_x + 4xy^2 \mathbf{e}_y + xy\mathbf{e}_z$ und ein Paraboloid begrenzt auf z = 1, d.h. $F = \{(x, y, z) | z = 5 - x^2 - y^2 = z, z \ge 1\}$.

- d) Berechne das Oberflächen
integral $\int_F \mathrm{rot} \mathbf{b} \cdot d\mathbf{f}.$
- e) C sei der Rand des Paraboloids. Berechne das Kurvenintegral $\oint_C \mathbf{b} \cdot d\mathbf{s}$ und überprüfe, dass der Satz von Stokes gilt.

Ankreuzbar: 1a-d, 2a-c, 2de, 2fg, 3a-c, 3de