8. Tutorium

für 21.12.2018

8.1 Sturm-Liouville-Problem

a) Transformiere die Differentialgleichung

$$(1-x^2)^2y''(x)-2x(1-x^2)y'(x)+\left(\ell(\ell+1)(1-x^2)-m^2\right)y(x)=0\,,\qquad (x\in[-1,1])$$

in die Sturm-Liouville'sche Gestalt $\left(\frac{d}{dx}\left[p(x)\frac{d}{dx}\right]+q(x)+\ell(\ell+1)\rho(x)\right)y(x)=0.$

b) Transformiere die Differentialgleichung

$$(1 - x2)y''(x) - (2a + 1)xy'(x) + n(n + 2a)y(x) = 0, (x \in [-1, 1])$$

in die Sturm-Liouville'sche Gestalt $\left(\frac{d}{dx}\left[p(x)\frac{d}{dx}\right]+q(x)+n(n+2a)\rho(x)\right)y(x)=0.$

c) Transformiere die Differentialgleichung

$$x^{2}y''(x) + xy'(x) + (a^{2}x^{2} - n^{2})y(x) = 0$$

in die Sturm-Liouville'sche Gestalt $\left(\frac{d}{dx}\left[p(x)\frac{d}{dx}\right]+q(x)+a^2\rho(x)\right)y(x)=0.$

d) Transformiere die Differentialgleichung

$$xy''(x) + (a+1-x)y'(x) + ny(x) = 0$$

in die Sturm-Liouville'sche Gestalt $\left(\frac{d}{dx}\left[p(x)\frac{d}{dx}\right]+q(x)+n\rho(x)\right)y(x)=0.$

8.2 Greensche Funktion III

Betrachte einen Differentialoperator

$$\mathcal{L}_t = \frac{d^2}{dt^2} - i\Omega \frac{d}{dt} + 2\Omega^2$$

 $(\Omega : reell).$

a) Finde mit Hilfe der Fouriertransformation eine Greensche Funktion $G_I^+(t, t')$, die die inhomogene Differentialgleichung $\mathcal{L}_t G_I^+(t, t') = \delta(t - t')$ erfüllt.

Hinweis: Falls die Pole, $\lambda_{1,2}$, der Fourier-transformierten Greenschen Funktion auf der reellen Achse liegen, verschiebe zuerst die Pole bei $i\varepsilon$ in die obere Hälfte der komplexen Zahlenebene (d.h. $\lambda_{1,2} \to \lambda_{1,2} + i\varepsilon$ mit $\varepsilon > 0$) und berechne den Grenzwert $G_I^+(t,t') = \lim_{\varepsilon \to 0+} G_{\varepsilon}^+(t,t')$.

- b) Berechne die Greensche Funktion $G_I^-(t,t') = \lim_{\varepsilon \to 0-} G_{\varepsilon}(t,t')$ mit einer negativen Verschiebung (d.h. $\lambda_{1,2} \to \lambda_{1,2} + i\varepsilon$ mit $\varepsilon < 0$).
- c) Überprüfe, dass $G_0(t,t') = G_I^+(t,t') G_I^-(t,t')$ die homogene Differentialgleichung $\mathcal{L}_t G_0(t,t') = 0$ erfüllt.

8.3 Separationsansatz und Frobenius-Methode

a) In beliebigen krummlinigen Orthogonalkoordinaten wird der Laplace-Operator durch

$$\nabla^{2}\psi(\mathbf{x}) = \frac{1}{\sqrt{g_{11}g_{22}g_{33}}} \sum_{i=1}^{3} \partial_{i} \left(\frac{\sqrt{g_{11}g_{22}g_{33}}}{g_{ii}} \partial_{i}\psi(\mathbf{x}) \right)$$

gegeben. ($\mathbf{g} = (g_{ij})$ ist der metrische Tensor des Koordinatensystems.) Zeige für Kugelkoordinaten (r, θ, ϕ) , dass gilt

$$\nabla^2 \psi(\mathbf{x}) = \frac{1}{r^2} \partial_r \left(r^2 \partial_r \psi(\mathbf{x}) \right) + \frac{1}{r^2 \sin \theta} \partial_\theta \left(\sin \theta \partial_\theta \psi(\mathbf{x}) \right) + \frac{1}{r^2 \sin^2 \theta} \partial_\phi^2 \psi(\mathbf{x}).$$

Die Kugelkoordinaten sind durch $(x, y, z) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$ definiert.

b) Führe den Separationsansatz $\psi(\mathbf{x}) = R(r)Q(\theta)F(\phi)$ der Differentialgleichung

$$\left(-\frac{1}{2}\nabla^2 - \frac{1}{r}\right)\psi(\mathbf{x}) = E\psi(\mathbf{x}).$$

durch und schreibe die Differentialgleichungen der r-Koordinate, der θ -Koordinate, und der ϕ -Koordinate an (E: Konstante).

c) Zeige, dass bei der Koordinatentransformation $u = \cos \theta + 1$ und $P(u) = Q(\theta)$ die Differentialgleichung der θ -Koordinate in die Form

$$\partial_u ((2u - u^2)\partial_u P(u)) + Z_1 P(u) - \frac{Z_2}{2u - u^2} P(u) = 0$$

umgeschrieben wird $(Z_1, Z_2 : Konstante)$.

d) Verwende den Ansatz $P(u) = \sum_{n=0}^{\infty} a_n u^{n+\sigma}$ und bestimme die charakteristischen Exponenten σ und die Rekursionsgleichung der Koeffizienten a_n der Differentialgleichung aus c) mit $Z_1 = \ell(\ell+1)$ und $Z_2 = 0$.

Ankreuzbar: 1ab, 1cd, 2a-c, 3a, 3bc, 3d