4. Tutorium für 5.11.2021

(Gruppen 1-4 : Online, Gruppen 5-8 : Präsenz)

4.1 Differentialoperatoren

Ein 3-dimensionaler Vektor und ein ortsabhängiges Vektorfeld seien als $\mathbf{x} = x_i \mathbf{e}_i$ und $\mathbf{A}(\mathbf{x}) = a_i(\mathbf{x}) \mathbf{e}_i$ in der kanonischen Basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ dargestellt.

- a) Berechnen Sie mit Hilfe der Indexschreibweise die Divergenz des Vektors $\nabla \cdot \mathbf{x} = \partial_i x_i$, wobei $\nabla = \mathbf{e}_i \partial_i = \mathbf{e}_i \frac{\partial}{\partial x_i}$.
- b) Berechnen und vereinfachen Sie mit Hilfe der Indexschreibweise den Gradient ∇x wobei $x = \sqrt{x_i x_i}$.
- c) Berechnen und vereinfachen Sie mit Hilfe der Indexschreibweise $\mathbf{A} \cdot [\nabla \times (\nabla \times \mathbf{A}) \nabla (\nabla \cdot \mathbf{A})].$
- d) Sei $\{\mathbf{f}_1,\mathbf{f}_2,\mathbf{f}_3\}$ eine nicht-orthonormale und ortsunabhängige Basis mit

$$(\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3) = (\mathbf{e}_1 \quad \mathbf{e}_2 \quad \mathbf{e}_3) \mathbf{S},$$

für eine Transformationsmatrix $\mathbf{S} = s^j{}_i$. Bezüglich der Basis $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ und der entsprechenden dualen Basis $\{\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3\}$ gilt die Darstellung $\mathbf{x} = x'^i \mathbf{f}_i = x'_i \mathbf{f}^i$, und für die partiellen Ableitungen in Richtung der Basisvektoren schreiben wir $\partial'^i = \frac{\partial}{\partial x'_i}$ und $\partial'_i = \frac{\partial}{\partial x'^i}$. Zeigen Sie, dass $\partial'_i = s^j{}_i \partial_j$ und $\partial'^i = t^i{}_j \partial^j$ gilt (ähnlich wie für die kontra- und kovarianten Koordinaten), wobei $\partial_j = \frac{\partial}{\partial x^j}$, $\partial^j = \frac{\partial}{\partial x_j}$ und $\mathbf{T} = \mathbf{S}^{-1}$ mit $\mathbf{T} = t^i{}_j$.

e) Berechnen Sie, mit Hilfe der Indexschreibweise und bezüglich einer nichtorthonormalen Basis die Divergenz $\nabla \cdot \mathbf{x}$ und überprüfen Sie, dass das Ergebnis mit Bsp.4.1a übereinstimmt.

4.2 Spektraltheorem

Gegeben sei eine Differentialgleichung

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t)$$

wobei **A** ein linearer Operator ist und $\mathbf{x}(t) \in \mathbb{R}^3$.

a) Der Vektor \mathbf{x} lässt sich in einer (zeitunabhängigen) Orthonormalbasis $\mathcal{B} =$ $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ als $\mathbf{x}(t) = x_i(t)\mathbf{e}_i$ darstellen. Zeigen Sie, mit $a_{ij} = \mathbf{e}_i^T \mathbf{A} \mathbf{e}_j$ gilt

$$\frac{d}{dt}x_i(t) = a_{ij}x_j(t).$$

b) Berechnen Sie die Eigenwerte $\lambda_1,\lambda_2,\lambda_3~(\lambda_1>\lambda_2>\lambda_3)$ der Matrix

$$(a_{ij}) = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

und schreiben Sie die normierten Eigenvektoren $\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3$ in der Basis \mathcal{B} an.

c) Sei \mathbf{E}'_i der Projektor auf den von \mathbf{e}'_i (aus b)) aufgespannten Unterraum. Stellen Sie die Projektoren \mathbf{E}'_i (i=1,2,3) in der Basis \mathcal{B} dar und zeigen Sie, $\mathbf{A} = \lambda_i \mathbf{E}'_i$.

d) Stellen Sie den Operator A in der Eigenbasis $\mathcal{B}' = \{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ dar und zeigen Sie, dass die entsprechende Matrix (a'_{ij}) diagonal ist.

e) Sei $\mathbf{x}(t) = x_i'(t)\mathbf{e}_i'$ eine Lösung der Differentialgleichung. Schreiben Sie die entsprechenden Differentialgleichungen der Koeffizienten $x_i'(t)$ (i = 1, 2, 3) an, und lösen Sie die Differentialgleichungen für $x_i'(t)$.

f) Sei $\mathbf{H} = \mathbf{A}^n$ (n : Potenz) mit \mathbf{A} wie in b). Geben Sie den Operator \mathbf{H} bezüglich der Basen \mathcal{B}' und \mathcal{B} in Matrixdarstellung an. Also (h_{ij}) und (h'_{ij}) .

g) Berechnen Sie den Kommutator [**H**, **A**]. h) Der Operator $e^{\mathbf{A}t}$ ist durch $e^{\mathbf{A}t} = \sum_{n} \mathbf{A}^{n} t^{n} / n!$ definiert. Zeigen Sie, dass $e^{\mathbf{A}t} = \sum_{i=1}^{3} e^{\lambda_{i}t} \mathbf{E}'_{i}$ gilt und dass die Lösung der Differentialgleichung durch $\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$ gegeben wird.

Ankreuzbar: 1a-c, 1de, 2ab, 2c-e, 2f-h