3. Tutorium für 28.10.2022

3.1 Dualraum

Gegeben seien drei Vektoren \mathbf{v}_1 , \mathbf{v}_2 und \mathbf{v}_3 , die in einer Orthonormalbasis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ mit

$$\left(\begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{array}\right) = \left(\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}\right) \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right) \equiv \left(\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}\right) \mathbf{S}$$

dargestellt werden.

- a) Berechnen Sie das Volumen V des von den Vektoren $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gebildeten Parallelepipedes.
- b) Berechnen Sie die Determinante der Transformationsmatrix und zeigen Sie $\det \mathbf{S} = V$.
- c) Finden Sie die Vektoren $\mathbf{v}^1, \mathbf{v}^2$ und \mathbf{v}^3 , die orthonormal zu den Vektoren $\mathbf{v}_1, \mathbf{v}_2$, und \mathbf{v}_3 sind (d.h. $\mathbf{v}^i \cdot \mathbf{v}_j = \delta^i_j$).
- d) Berechnen Sie das Volumen V^* des von den Vektoren $\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3$ gebildeten Parallelepipedes.

[Anmerkung : $\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3$ sind die Vektoren im dualen Raum und werden mit dem hochgestellten Index bezeichnet ($\mathbf{v}_i^* = \mathbf{v}^i$).]

3.2 Levi-Civita Symbol

Das Levi-Civita Symbol ist definiert als:

$$\varepsilon_{ijk\dots} = \left\{ \begin{array}{ll} +1 & \text{falls} \quad (i,j,k,\cdots) \, \text{eine gerade Permutation von} \, \left(1,2,3,\cdots\right) \, \text{ist}, \\ -1 & \text{falls} \quad (i,j,k,\cdots) \, \text{eine ungerade Permutation von} \, \left(1,2,3,\cdots\right) \, \text{ist}, \\ 0 & \text{sonst}. \end{array} \right.$$

- a) Schreiben Sie für eine rechtshändige Orthonormalbasis $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ das Ergebnis des Kreuzprodukts $\mathbf{a}_i \times \mathbf{a}_j \ (1 \leq i, j \leq 3)$ mit Hilfe des Levi-Civita-Symbols an.
- b) Die Bewegungsgleichung der Larmorpräzession ist mit einer Konstante γ durch

$$\frac{d}{dt}\mathbf{d}(t) = \gamma \mathbf{d}(t) \times \mathbf{B}$$

gegeben, wobei $\mathbf{d}(t)$ ein zeitabhängiges Dipolmoment und \mathbf{B} ein konstantes Magnetfeld ist. Schreiben Sie die Gleichung mit Hilfe der Indexschreibweise bezüglich einer Orthonormalbasis an. ($\mathbf{d}(t)$ und \mathbf{B} sind 3-dimensionale Vektoren).

- c) Berechnen Sie die Determinante der Matrix $\mathbf{E} = (\mathbf{e}_i \ \mathbf{e}_j \ \mathbf{e}_k) (1 \leq i, j, k \leq$
- 3), wobei \mathbf{e}_1 , \mathbf{e}_2 und \mathbf{e}_3 3 × 1 Matrizen (oder 3-dimensionale Spaltenvektoren)

und durch

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

gegeben sind. Schreiben Sie das Ergebnis mit Hilfe des Levi-Civita-Symbols an.

- d) Schreiben Sie mit Hilfe des Kronecker-Deltas die Elemente der 3×3 Matrix **E** aus c) an.
- e) Zeigen Sie, dass für $1 \le i, j, k, \ell, m, n \le 3$, det $\mathbf{M} = \varepsilon_{ijk} \varepsilon_{\ell mn}$, wobei

$$\mathbf{M} = \begin{pmatrix} \delta_{i\ell} & \delta_{im} & \delta_{in} \\ \delta_{j\ell} & \delta_{jm} & \delta_{jn} \\ \delta_{k\ell} & \delta_{km} & \delta_{kn} \end{pmatrix}$$

f) Zeigen Sie $\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$.

3.3 Orthogonalprojektion

Die Transformation zwischen zwei Orthonormalbasen, $\{\mathbf{e}_1, \mathbf{e}_2\}$ und $\{\mathbf{f}_1, \mathbf{f}_2\}$, ist durch $\mathbf{f}_i = \mathbf{e}_j s_{ji}$ definiert, wobei

$$\begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} .$$

 $\hat{\mathbf{P}}_i$ sei der Orthogonalprojektor auf den Vektor \mathbf{e}_i und $\hat{\mathbf{Q}}_i$ auf den Vektor \mathbf{f}_i .

- a) Stellen Sie mit Hilfe der Orthogonalprojektoren, $\hat{\mathbf{P}}_1$ und $\hat{\mathbf{P}}_2$, den Vektor \mathbf{f}_i in der Basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ dar und schreiben Sie die Matrixelemente (oder Koordinaten) s_{ij} als Skalarprodukte der Basisvektoren an.
- b) Ein Vektor \mathbf{x} und seine Projektion $\mathbf{y}_i = \hat{\mathbf{Q}}_i \mathbf{x}$ lassen sich in der Basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ als $\mathbf{x} = x_j \mathbf{e}_j$ und $\mathbf{y}_i = y_{ij} \mathbf{e}_j$ darstellen. Die Projektion ist eine lineare Transformation und kann als eine 2×2 Matrix dargestellt werden. Berechnen Sie die Elemente der Transformationsmatrix q_{ijk} zwischen den Koordinaten (x_1, x_2) und (y_{i1}, y_{i2}) bezüglich der Basis $\{\mathbf{e}_1, \mathbf{e}_2\}$, d.h., $y_{ij} = q_{ijk}x_k$. (Für ein gegebenes i ist $\begin{pmatrix} q_{i11} & q_{i12} \\ q_{i21} & q_{i22} \end{pmatrix}$ eine 2×2 Matrix.)
- c) Die Vektoren \mathbf{x} und \mathbf{y}_i aus b) lassen sich in der Basis $\{\mathbf{f}_1, \mathbf{f}_2\}$ als $\mathbf{x} = x_j' \mathbf{f}_j$, $\mathbf{y}_i = y_{ij}' \mathbf{f}_j$ darstellen. Berechnen Sie die Elemente der Transformationsmatrix q_{ijk}' zwischen den Koordinaten (x_1', x_2') und (y_{i1}', y_{i2}') bezüglich der Basis $\{\mathbf{f}_1, \mathbf{f}_2\}$, d.h. $y_{ij}' = q_{ijk}' x_k'$.
- d) Zeigen Sie $q_{ijk} = s_{j\ell} q'_{i\ell m} s_{km}$
- e) Berechnen Sie $q_{1jk} + q_{2jk}$.
- f) Berechnen Sie $(2q_{1ij} q_{2ij})(2q_{1jk} q_{2jk})$.

Ankreuzbar: 1a-d, 2a-d, 2ef, 3a-c, 3d-f