5. Tutorium für 11.11.2022

5.1 Metrischer Tensor

Eine nicht-orthogonale Basis $F = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ wird in einer Orthonormalbasis $E = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ durch $\mathbf{f}_i = s^j{}_i\mathbf{e}_j$ definiert, wobei

$$\mathbf{S} = \begin{pmatrix} s_{1}^{1} & s_{2}^{1} & s_{3}^{1} \\ s_{1}^{2} & s_{2}^{2} & s_{3}^{2} \\ s_{1}^{3} & s_{2}^{3} & s_{3}^{3} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- a) Der Vektor \mathbf{x} lässt sich in der Orthonormalbasis E als $\mathbf{x} = x^i \mathbf{e}_i$ mit $(x^1, x^2, x^3) = (2, 1, 4)$ darstellen. Berechnen Sie die Länge des Vektors $L = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.
- b) Der Vektor \mathbf{x} aus (a) wird in der nicht-orthogonalen Basis F als $\mathbf{x} = x'^i \mathbf{f}_i$ dargestellt. Bestimmen Sie die neuen Koordinaten (x'^1, x'^2, x'^3) und berechnen Sie die Länge des Vektors als $\sqrt{(x'^i \mathbf{f}_i) \cdot (x'^j \mathbf{f}_j)}$.
- c) $F^* = \{\mathbf{f}^1, \mathbf{f}^2, \mathbf{f}^3\}$ sei die Basis im dualen Raum. Der Vektor \mathbf{x} aus (a) wird im dualen Raum als $\mathbf{x} = x_i' \mathbf{f}^i$ dargestellt. Bestimmen Sie die Koordinaten (x_1', x_2', x_3') und berechnen Sie die Länge des Vektors als $\sqrt{(x_1' \mathbf{f}^i) \cdot (x_2' \mathbf{f}^i)}$.
- d) Die Basistransformation zwischen F und F^* ist durch $\mathbf{f}_i = \mathbf{f}^j h_{ji}$ definiert. Berechnen Sie die Elemente h_{ji} der Transformationsmatrix und zeigen Sie $h_{ji} = \mathbf{f}_i \cdot \mathbf{f}_i$.
- e) Die inverse Basistransformation ist durch $\mathbf{f}^i = \mathbf{f}_j h^{ji}$ definiert. Berechnen Sie die Elemente h^{ji} der Transformationsmatrix und zeigen Sie $h^{ji} = \mathbf{f}^j \cdot \mathbf{f}^i$.

5.2 Tensoren

Ein Tensor zweiter Stufe $\hat{\mathbf{A}}$ ist durch $\hat{\mathbf{A}} = a^i{}_j \mathbf{f}_i \otimes \mathbf{f}^j$ gegeben, wobei $\mathcal{B} = \{\mathbf{f}_1, \mathbf{f}_2\}$ eine nicht-orthonormale Basis und $\mathcal{B}^* = \{\mathbf{f}^1, \mathbf{f}^2\}$ die zugehörige duale Basis ist.

- a) Der Rechtseigenvektor $\mathbf{x} = x^i \mathbf{f}_i$ erfüllt die Eigenwertgleichung $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Schreiben Sie die Gleichung in Indexschreibweise an.
- b) Der Linkseigenvektor $\mathbf{y} = y_i \mathbf{f}^i$ erfüllt die Eigenwertgleichung $\mathbf{y} \hat{\mathbf{A}} = \lambda \mathbf{y}$. Schreiben Sie die Gleichung in Indexschreibweise an.
- c) Schreiben Sie die Transformation zwischen den Komponenten a^{i}_{j} in der gemischten Darstellung und den kovarianten Komponenten a_{ij} des Tensors $\hat{\mathbf{A}}$ bezüglich der Basis \mathcal{B}^{*} an (d.h. $\hat{\mathbf{A}} = a_{ij}\mathbf{f}^{i}\otimes\mathbf{f}^{j}$).
- d) Die Eigenwertgleichung $\mathbf{\hat{A}x} = \lambda \mathbf{x}$ aus (a) wird mit den kovarianten Komponenten a_{ij} als $a_{ij}x^j = \lambda x^j h_{ji}$ dargestellt. Bestimmen Sie die kovarianten Komponenten h_{ji} .
- e) Berechnen Sie die Eigenwerte λ_1, λ_2 ($\lambda_1 > \lambda_2$) für $(a^1, a^1, a^2, a^2, a^2) = (5, 3, -6, -4)$ und stellen Sie die Rechtseigenvektoren $\mathbf{x}_1, \mathbf{x}_2$ in der Basis \mathcal{B} und die Linkseigenvektoren $\mathbf{y}^1, \mathbf{y}^2$ in der Basis \mathcal{B}^* dar. (Hinweis: Verwenden Sie die Eigenwertgleichung aus (a) und (b))

- f) Zeigen Sie, $\mathbf{y}^1 \cdot \mathbf{x}_2 = \mathbf{y}^2 \cdot \mathbf{x}_1 = 0$ und normieren Sie die Linkseigenvektoren $(\mathbf{x}^i = c\mathbf{y}^i)$, sodass die Orthonormalbedingungen $\mathbf{x}^i \cdot \mathbf{x}_j = \delta^i_j$ erfüllt wird.
- g) Wie lauten die Komponenten $a'^i{}_j$ des Tensors $\hat{\mathbf{A}}$ in der Eigenbasis, d.h. $\hat{\mathbf{A}} = a'^i{}_i \mathbf{x}_i \otimes \mathbf{x}^j$.
- h) Sei V der von der Basis $\mathcal B$ aufgespannte Vektorraum und die kovarianten Komponenten des metrischen Tensors bezüglich der Basis $\mathcal B$ ist durch

$$\left(\begin{array}{cc}g_{11} & g_{12}\\g_{21} & g_{22}\end{array}\right) = \left(\begin{array}{cc}1 & 2\\2 & 5\end{array}\right)$$

gegeben. Finden Sie eine Orthonormalbasis $\{\mathbf{e}_1, \mathbf{e}_2\}$ von V und bestimmen Sie die Transformationsmatrix \mathbf{T} , wobei $t^i{}_j\mathbf{f}_i = \mathbf{e}_j$. Nehmen Sie an, dass \mathbf{e}_1 parallel zu \mathbf{f}_1 ist.

Ankreuzbar: 1ab, 1c-e, 2a-d, 2ef, 2gh