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1 Fundamentals

Quantum electrodynamics is the unification of electrodynamics and quantum theory

in conformity with the principles of special relativity.

Ordinary quantum mechanics is usually based on the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (1.1)

which appears to be noncovariant by the distinguished role of time, but is not actually

in conflict with special relativity. Rather, the Schrödinger equation can be under-

stood as merely expressing the requirement that the symmetry of time translation

be representable as a unitary transformation U = exp(−iHt/~).

What renders ordinary quantum mechanics nonrelativistic is a nonrelativistic

choice of the Hamilton operator H and a restriction to a fixed number of particles.

As we shall see, a relativistic interacting quantum theory cannot be found for a fixed

number of particles, but we shall nevertheless begin by setting up a relativistic wave

equation for a single particle.

1.1 Relativistic notation

Before doing so we fix our relativistic notation and conventions: The Euclidean

3-dimensional space (x, y, z) is generalised to a 4-dimensional space-time with coor-

dinates

xµ = (x0, x1, x2, x3) = (ct, x, y, z) (1.2)

with Minkowski metric

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.3)

Greek indices run over values 0, 1, . . . , 3; when we want to restrict to spatial compo-

nents 1, . . . , 3 we shall use lower-case Latin letters.

The spatial components of the Minkowski metric are proportional to the Kro-

necker delta δij. Just as the latter is invariant under 3-dimensional rotations and

translations, the indefinite Minkowski metric is invariant under Lorentz transforma-

tions and 4-dimensional translations

x′µ = Lµνx
ν + aµ (1.4)
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where we used the Einstein convention of summing over repeated indices. This leaves

the line element

ds2 = gµνdx
µdxν (1.5)

invariant, for gµνL
µ
σL

ν
ρ = gσρ (in matrix notation: LTgL = g). In particular, a

Lorentz boost with velocity v in x-direction is given by

Lµν =


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 (1.6)

with

β =
v

c
, γ =

1√
1− β2

.

Vectors transforming under Lorentz transformations like dxµ are called con-

travariant vectors and carry upper indices; those transforming like

∂µ ≡
∂

∂xµ
(1.7)

are called covariant vectors.

Indices are lowered and raised by multiplication with the metric gµν and gµν ,

where the latter is defined by

gµνg
νλ = δλµ =

{
1 for µ = λ

0 for µ 6= λ
(1.8)

Numerically, gµν = gµν . Note that raising or lowering the indices of a Lorentz vector

changes the sign of its spatial components.

A scalar product of a covariant and a contravariant vector gives a quantity in-

variant under Lorentz transformation (a scalar under Lorentz transformations). Ex-

amples are the d’Alembertian (or quabla)

∂µ∂
µ = gµν∂µ∂ν =

(
∂

c ∂t

)2

−∇2 ≡ 2 (1.9)

and the square of the 4-momentum

pµ = (E/c, ~p), pµ = (E/c,−~p) (1.10)

giving

p2 = pµpµ = E2/c2 − ~p2 = m2c2 (1.11)

where m is the invariant (rest) mass.

In quantum mechanics, the 4-momentum operator in configuration space is rep-

resented by pµ = i~∂µ = (i~∂t,−i~∇).

2
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1.2 Natural units

In relativistic quantum theory, a natural system of units is obtained by setting

~ = 1, c = 1. (1.12)

c = 1 puts spatial lengths and time intervals on equal footing in that a unit for

time implies a unit for length. (Which is also common practice in astronomy where

distances are often given in light-years.)

~ has the dimension of energy × time. ~ = 1 therefore allows one to express time

(and therefore space) intervals in terms of inverse energy. For instance, 1 eV−1 ≈
200 nm is an adequate unit for the physics of atomic transitions, whereas in nuclear

physics 1 fm = 10−15m ≈ 1/200 MeV is a typical length scale, and the GeV (109eV)

≈ (0.2 fm)−1 is the most frequently used energy unit in elementary particle physics.

Instead of using a unit for electrical charge and expressing the charge of an elec-

tron in its terms, it is customary to use the fine structure constant α ≡ e2/(4π~c) ≈
1/137.036

2 Relativistic wave equations

Simply replacing the nonrelativistic expression for (kinetic) energy, E = ~p2

2m
, by

its relativistic version, E =
√
~p2 +m2, would lead to a Schrödinger equation with

a configuration space representation which is asymmetric in spatial and temporal

derivatives and, even worse, nonlocal. However, a symmetric and local equation

is obtained by iterating both sides of the Schrödinger equation and using E2 =

~p2 +m2 → H2 = −∇2 +m2:

−∂2
t ψ(t, x) = (−∇2 +m2)ψ(t, x) ⇒ (2 +m2)ψ = 0 (2.1)

This is the so-called Klein-Gordon equation.1

The fact that the nonrelativistic Schrödinger equation

i∂tψ(t, x) = [− 1

2m
∇2 + V ]ψ(t, x) (2.2)

1Found independently by Klein and Gordon in 1926 after Schrödinger had published his nonrel-
ativistic wave equation, but actually discovered first by Schrödinger, who did not include it in his
1926 series of papers because it gave a wrong expression for the fine structure of the H atom — the
spin-orbit coupling as the cause for this discrepancy was noted by Schrödinger only later.
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is linear in the time derivative, is however crucial in interpreting ρ = |ψ|2 as the

density for the probability of finding the (single) particle it is describing at a given

point. (2.2) implies that

∂

∂t
(ψ∗ψ) =

i

2m

(
ψ∗∇2ψ − (∇2ψ∗)ψ

)
=

i

2m
∇ · (ψ∗∇ψ −∇ψ∗ · ψ) (2.3)

and so ρ obeys a continuity equation and the total probability
∫
dx|ψ|2 = 1 is a

conserved quantity.

In the Klein-Gordon equation, this interpretation has to be abandoned. One

instead finds

∇ · (ψ∗∇ψ −∇ψ∗ · ψ) =
∂

∂t

(
ψ∗ψ̇ − ψ̇∗ψ

)
(2.4)

This is again a continuity equation, but the corresponding ρ ∝ (ψ∗ψ̇ − ψ̇∗ψ) is not

positive definite.

A (many-)particle interpretation can be found in a quantum field theory based

on the Klein-Gordon equation,2 but historically this impasse was the motivation for

Dirac to look for a different relativistic wave equation, linear in the time derivative

so that the usual probabilistic interpretation applies.

2.1 Derivation of the Dirac equation

Dirac stuck to the Schrödinger equation (1.1) with its first-order time derivative, but

generalized it to a multi-component wave-function ψ (“spinor”) and H to a matrix.

In order to have a chance for Lorentz-invariance, H, in x-space, must be linear in

spatial derivatives as well,

i
∂ψ

∂t
= Hψ =

(
1

i
αi∂i + βm

)
ψ , (2.5)

where αi and β are matrices acting on the components of ψ.

When iterated, this must coincide with the Klein-Gordon equation, because the

latter just expresses the relativistic relation between energy and momentum (1.11).

This leads to

(−iαi∂i + βm)(−iαj∂j + βm) = (−∂i∂jδij +m2)1

= −αiαj∂i∂j − im(βαj + αjβ)∂j + β2m2 (2.6)

2The right-hand-side of Eq. (2.4) turns out to have then the interpretation of a charge density
for the charged scalar particles described by the Klein-Gordon equation.
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which requires that

{αi, αj} = 2δij (2.7)

{αi, β} = 0 (2.8)

β2 = 1 (2.9)

Because of (2.9), multiplying (2.5) by β gives the Lorentz-covariant form of the

Dirac equation

(iγµ∂µ −m)ψ(x) =: (i /∂ −m)ψ(x) = 0 (2.10)

with the Dirac γ-matrices

γµ = (γ0, γm) = (β, βαm) (2.11)

which satisfy the Clifford algebra relation

{γµ, γν} = 2gµν1 (2.12)

2.2 Properties of the Dirac matrices

Before giving an explicit representation of the Dirac matrices, let us list their general,

representation-independent properties.

i) Hermiticity of the Hamilton operator H requires Hermiticity of the matrices

~α, β. This implies that γ0 = β is hermitian, (γ0)† = γ0, and that γi is anti-hermitian:

(γi)† = (βαi)
† = αiβ = −βαi = −γi .

ii) Because (αi)
2 = β2 = 1, the eigenvalues of the matrices αi, β (= γ0) are ±1.

On the other hand, (γi)2 = −1 and the eigenvalues of the γi are ±i.
iii) The matrices αi, β, γ

µ are all traceless. This follows from taking the trace of

both sides of

αi = −βαiβ, β = −α(i)βα(i), γi = −γ0γiγ0

(brackets around repeated indices denote exemption from the Einstein summation

convention) and using cyclicity of the trace, i.e. tr(ABC) = tr(BCA).

iv) From ii) and iii) follows that the dimension of the Dirac matrices must be

even.

Among 2-dimensional matrices, one can find just 3 anticommuting, hermitean

matrices with the required properties for αi, β: the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.13)

5
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These can be used to write a Dirac equation in up to 2+1 space-time dimensions. In

4 dimensions, the Pauli matrices suffice for (2.5), if we omit the mass term, leading

to the so-called Weyl equation, which however cannot be rewritten into (2.10) with

(2.12), because that would require 4 matrices.

In 3+1 dimensional space-time, the matrix dimension of the γ’s must be ≥ 4.

Indeed, using the Pauli matrices as building blocks, one possibility is the following

(Dirac representation)

αi =

(
0 σi

σi 0

)
, β =

(
12 0

0 −12

)
= γ0, γi =

(
0 σi

−σi 0

)
. (2.14)

However, this choice is not unique. γµ → UγµU−1 with U unitary (to preserve

the Hermiticity properties) gives an equivalent representation.

Another useful representation is the so-called Weyl or chiral representation

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
. (2.15)

Yet another one is the so-called Majorana representation

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
,

(2.16)

where all γ-matrices are purely imaginary. This implies that (iγµ∂µ − m)ψ = 0

becomes a purely real equation, and that the real and imaginary parts of ψ are

decoupled. As we shall see, this nice feature is lost when ψ is coupled to electromag-

netic fields. Neutral particles on the other hand may well be “Majorana”, meaning

that, in the Majorana representation3, they can be described by a real field ψ, and

thus by half as many degrees of freedom as those of a complex Dirac field. However,

the standard model of elementary particle physics does not (yet) have Majorana

particles.

2.3 Dirac adjoint and Dirac current

Because the Hermiticity properties of the γ-matrices can be summarized by

γµ† = γ0γµγ0 (2.17)

it is natural to define the Dirac adjoint spinor by

ψ̄ := ψ†γ0 (2.18)

3In other representations, a reality condition on ψ is slightly more involved, but of course still
possible to formulate.

6
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Taking the adjoint of the Dirac equation (iγµ∂µ −m)ψ = 0 gives

ψ†(−iγµ†←∂µ −m) = 0 ⇒ ψ̄(i←/∂ +m) = 0. (2.19)

(2.19) together with the original form of the Dirac equation establishes that there is

a conserved current

ψ̄(←/∂ + /∂→)ψ = ∂µ(ψ̄γ
µψ︸ ︷︷ ︸
jµ

) = 0 (2.20)

with positive definite density

j0 = ρ = ψ̄γ0ψ = ψ†ψ =
4∑

α=1

ψ†αψα ≥ 0 . (2.21)

This opens the possibility of interpreting ρ as a probability density in analogy with

the nonrelativistic Schrödinger equation, or in other words to use the Dirac equation

as a single-particle relativistic wave equation. The price to pay is that the Dirac wave

function has 4 components (Dirac spinor), which we shall label by indices from the

beginning of the Greek alphabet. As we shall see presently, a spinor transforms rather

differently from a 4-vector. (That both involve the same number of components is

an accident of 4-dimensional space-time; in n dimensions a Dirac spinor has 2[n/2]

components.)

2.4 Covariance of the Dirac equation

Although we have suggested covariance of the Dirac equation by using a relativistic

notation for the γ-matrices, it remains to show that the Dirac equation is indeed co-

variant under Lorentz transformations, or, more generally, under the Lorentz group

plus translations (Poincaré group). This means that the Dirac equation should pre-

serve its form after a transformation to a different frame of reference by an arbitrary

Poincaré transformation

x′µ = Lµνx
ν + aµ, LTgL = g (2.22)

with a well-defined local relation between ψ′(x′) and ψ(x) so that

iγµ
∂

∂xµ
ψ(x)−mψ(x) = 0

⇒ iγµ
∂

∂x′µ
ψ′(x′)−mψ′(x′) = 0 (2.23)

i) Translations: Because ∂/∂xµ = ∂/∂(x + a)µ = ∂/∂x′µ, these are trivially

realized by ψ′(x′) = ψ(x) or

ψ′(x) = ψ(x− a) (2.24)

7
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ii) Lorentz transformations: If we assume a linear relation

ψ′α(x
′) = Sαβ(L)ψβ(x), x′µ = Lµνx

ν , (2.25)

form invariance of the Dirac equation, in which

∂

∂x′µ
=

∂xν

∂x′µ︸︷︷︸
(L−1)ν

µ

∂

∂xν

requires that

S−1γµ(L−1)νµS = γν ⇒ S−1(L)γµS(L) = Lµνγ
ν (2.26)

This fits perfectly to the Clifford relation (2.12) which is left unchanged because

of Lµσ L
ν
ρ g

σρ = gµν .

The existence of a matrix S(L) for all Lorentz transformations L is guaranteed by

the following theorem from group theory:4 The Clifford algebra relation {Ai, Aj} =

2qij1 with qij a symmetric n × n matrix and n even has precisely one equivalence

class of irreducible representations of dimension 2n/2.

This determines S(L) uniquely up to a factor, which turns out to be ±1; the

S(L) thus form a two-valued representation of the Lorentz group.

For infinitesimal Lorentz transformations, however, the relation L → S(L) is

unique once we require that S(1) = 1. Consider

Lµν = δµν + ε ωµν (2.27)

with infinitesimal ε.

Requiring that (2.27) be a Lorentz transformation (LTgL = g) is equivalent to

ωµν = −ωνµ. There are therefore 6 independent ωµν , matching the number of the

generators of spatial rotations (3) plus those of Lorentz boosts (3).

An ansatz S = 1 + εT , S−1 = 1− εT in (2.26) leads to

[γµ, T ] = ωµνγ
ν (2.28)

and this is solved by (exercise!)

T =
1

8
ωµν [γ

µ, γν ]. (2.29)

4See e.g. Sexl/Urbantke: Relativität, Gruppen, Teilchen (Springer Verlag)
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2.4.1 Example: Rotation about z-axis

An infinitesimal rotation about the z-axis is given by

x′ = x+ εy, y′ = y − εx, z′ = z (2.30)

The corresponding ωµν is given by ω12 = g2νω1
ν = −1, ω21 = +1, and all other

components zero. This gives

S = 1 +
ε

8
ωµν [γ

µ, γν ] = 1− ε

4
[γ1, γ2] = 1 + ε

i

2
Σ3 (2.31)

with Σ3 = σ3 ⊕ σ3 in the Dirac and in the chiral representation of the γ matrices.

Writing out ψ′(x′) = Sψ(x) gives

ψ′(~x) = (1 + ε
i

2
Σ3)ψ(x− εy, y + εx, z)

= ψ(~x) + iε
[ 1

2
Σ3︸︷︷︸

Spin sz

+ (x
∂

i∂y
− y ∂

i∂x
)︸ ︷︷ ︸

`z︸ ︷︷ ︸
Jz

]
ψ(~x) (2.32)

Because Σ3 has eigenvalues ±1, this shows5 that ψ carries spin 1
2
.

Finite rotations with angle ϕ can be obtained as

ψ′(~x′) = lim
N→∞

(
1 +

i

2

ϕ

N
Σ3

)N
ψ(~x) = exp{iϕ

2
Σ3}ψ(~x) (2.33)

and we see that a rotation by ϕ = 2π, which corresponds to L = 1, is mapped to

S = eiπΣ3 = −1. Only a rotation by ϕ = 4π brings us back to S = 1.

This two-valuedness of the spinor representation of the rotation group is inherited

by the full Lorentz group (with all complications coming solely from the rotations).6

5Strictly speaking, the identification of spin sz = 1
2Σ3 or more generally si = 1

2Σi = i
8εijk[γj , γk]

does not make sense relativistically: ~s commutes with the Dirac operator /P only in the rest frame
Pµ = mδ0µ. The proper definition is through the Pauli-Lubanski vector Wµ = − 1

2εµνρσS
νρPσ,

which for Pµ = mδ0µ reduces to Wµ = (0,m~s). [εµνρσ is the totally antisymmetric ε-tensor with
ε0123 = +1 = −ε0123.]

6In group theory language: the spinor representation is a one-valued representation of the group
SU(2), which is the universal (2:1) covering group of SO(3). The covering group of the (component
of unity) of the Lorentz group SO0(3,1)⊃SO(3) is the group SL(2,C)⊃SU(2). For more details see
Sexl/Urbantke: Relativität, Gruppen, Teilchen (Springer Verlag).
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2.4.2 Example: Lorentz boost along x-axis

A Lorentz boost along x axis is generated by ω0
1 = ω1

0 = 1. Because (ωµν)
2 =

12 ⊕ 02, and therefore (ωµν)
3 = ωµν we find for Lµν = exp (ξωµν)

L =
∞∑
n=0

ωn
ξn

n!
=
∞∑
n=0

ω2n︸︷︷︸
ω2

∀n>0

ξ2n

(2n)!
+
∞∑
n=0

ω2n+1︸ ︷︷ ︸
ω
∀n

ξ2n+1

(2n+ 1)!

= 1− ω2 + ω2 cosh ξ + ω sinh ξ (2.34)

Explicitly,

Lµν =


cosh ξ sinh ξ 0 0

sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1

 (2.35)

which can be identified with (1.6) through β = v = tanh ξ. Indeed, cosh ξ =

1/
√

1− β2 = γ, and sinh ξ = βγ. The parameter ξ is called rapidity ; it is par-

ticularly useful because it is additive under successive boosts.

The corresponding spinor transformation S(L) is given by

S(L) = exp

(
1

8
ξωµν [γ

µ, γν ]

)
= exp

(
1

4
ξ[γ0, γ1]

)
. (2.36)

In the Dirac representation (2.14), [γ0, γ1] = 2

(
0 σ1

σ1 0

)
= 2α1. Because (α1)

2 =

14, (α1)
3 = α1, etc., we obtain

S(L) = 1 cosh
ξ

2︸ ︷︷ ︸
=:C

+α1 sinh
ξ

2︸ ︷︷ ︸
=:S

=


C 0 0 S

0 C S 0

0 S C 0

S 0 0 C

 (2.37)

This expression is admittedly not too illuminating, but we shall use this result

later. We shall also find it useful to express ξ in terms of E and px: With v = px

E
=

tanh ξ we get

tanh
ξ

2
=

tanh ξ

1 +
√

1− tanh2 ξ
=

v

1 +
√

1− v2
=

p

E +m
(2.38)

⇒ cosh
ξ

2
=

√
E +m

2m
, sinh

ξ

2
= tanh

ξ

2
cosh

ξ

2
(2.39)
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2.4.3 Components of the Lorentz group

The finite Lorentz transformation (2.34) and generally any Lorentz transformation

of the form Lµν = exp (ξωµν) is one that is continuously connected with the identity

through the parameter ξ. This does not exhaust all elements of the Lorentz group,

but only those with determinant det(L) = +1 and L0
0 ≥ 1, for it is not possible by a

continuous change of parameters to jump from these values to the other possibilities

det(L) = −1 and/or L0
0 ≤ −1. The subgroup of Lorentz transformations with

det(L) = +1 and L0
0 ≥ 1 is called the proper orthochronous Lorentz group L↑+.

As long as only elements from L↑+ are considered, the representation S(L) of

the Lorentz group7 is reducible (i.e.: there are nontrivial invariant subspaces). This

becomes manifest in the chiral representation of the Dirac matrices (2.15), in which

the generators of

S(L) = exp

(
− i

2
ωµνS

µν

)
, L ∈ L↑+ (2.40)

(where the parameter ξ is now implicit in ωµν) read

S0i =
i

4
[γ0, γi] = − i

2

(
σi 0

0 −σi

)
, Sij =

i

4
[γi, γj] =

1

2
εijk

(
σk 0

0 σk

)
. (2.41)

The upper two and lower two components of a four-component spinor therefore

transform without being mixed.

It is in fact possible to write a relativistic wave equation for a spinor which has

only half of the components of a Dirac spinor: when the mass is put to zero, the

Dirac equation (in the chiral representation) also does not mix the upper and lower

half of a spinor. Putting to zero one half, ψ =
(
φ
0

)
, or ψ =

(
0
χ

)
leads to the so-called

Weyl equation (
p0 + ~p · ~σ

)
φ = 0 or

(
p0 − ~p · ~σ

)
χ = 0 (2.42)

which is of great importance in the theory of weak interactions, where it describes

massless neutrinos.

The full Lorentz group is obtained by composing elements of L↑+ with the discrete

operations of space inversion P or time reversal T or both together.

Space inversion (“parity transformation”) is effected by

Lµν =

(
1

−13

)
and so this must be represented by a matrix S(L) = P with the properties

γ0 = P−1γ0P, ~γ = −P−1~γP. (2.43)

7More precisely: the covering group of L↑+

11



QED – Version November 3, 2003 2.4 Covariance of the Dirac equation

This is solved by P = ±γ0. In the chiral representation (2.15), γ0 is block-off-

diagonal, so the upper and lower halves of a spinor no longer define invariant sub-

spaces if parity is included. A Weyl spinor which involves only one half therefore

breaks parity, and indeed parity has been found to be violated in weak interactions.

The Dirac equation on the other hand is parity invariant and so is quantum electro-

dynamics.

Space inversion together with time reversal, PT, is effected by Lµν = −δµν , and

so

γµ = −S(PT )−1γµS(PT ) (2.44)

One easily verifies that a solution for S(PT ) is

γ5 := iγ0γ1γ2γ3 ≡ i

4!
εµνρσγ

µγνγργσ (2.45)

γ5 has the properties

γ5 = (γ5)†, (2.46)

(γ5)2 = 1, (2.47)

{γ5, γµ} = 0 (2.48)

The last relation (2.48) implies that [γ5, Sµν ] = 0, which again proves, by Schur’s

lemma8, that S(L ∈ L↑+) = exp(− i
2
ωµνS

µν) is reducible. The invariant subspaces

under the latter transformations are given by the two projection operators

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5) (2.49)

which project onto left- and right-handed chiralities, respectively.

ψL = PLψ and ψR = PRψ are eigenstates of γ5 with eigenvalues +1 and -1,

respectively. Dirac spinors which are solutions of the Dirac equation can have definite

chiralities only in the massless case. By acting with γ5γ0 on /pψ = 0 one can readily

show that (exercise!)
~Σ · ~pψ = γ5p0ψ (2.50)

so that with p0 = E = |~p|

1

2
γ5ψ =

1

2

~Σ · ~p
|~p|

ψ =
~s · ~p
|~p|

ψ (2.51)

8If a matrix commutes with all elements of a matrix representation of a group, then either it is
proportional to the unit matrix or this representation is reducible.

12



QED – Version November 3, 2003 2.4 Covariance of the Dirac equation

Chirality defined as 1
2

times the eigenvalue of γ5 thus equals the helicity (the

projection of spin on the direction of ~p) of massless particles. This is a boost-

invariant quantity, because massless particles cannot be overtaken. It does however

change under parity.

In the chiral representation (2.15)

γ5
chiral rep. =

(
−1 0

0 1

)
(2.52)

and so the upper (lower) half of a Dirac spinor is of left (right) chirality. As we saw in

(2.41), they transform under different, namely complex conjugated, representations

of L↑+, sometimes denoted as (1
2
, 0) and (0, 1

2
), respectively.

In other representations, notably in the Dirac representation (2.14) where

γ5
Dirac rep. =

(
0 1

1 0

)
(2.53)

the above reducibility (when parity is excluded) is less conspicuous.

2.4.4 Dirac field bilinears

The advantage of the Dirac representation is instead in the diagonal form of γ0, which

(besides representing parity) is of singular importance because it effects Hermitian

conjugation of the γ matrices as we have seen in (2.17) and so enters the definition

of Dirac adjoints (2.18).

We still have to establish the transformation properties of the Dirac adjoint in

order to verify covariance of the conserved current (2.20).

Under a Lorentz transformation ψ → S(L)ψ, and so ψ̄ → ψ†S†γ0 = ψ̄γ0S†γ0.

With (2.17) and the explicit form of the S(L) in (2.40) as well as of the S(L) asso-

ciated with parity one can show that (exercise!)

γ0S†γ0 = S−1. (2.54)

Therefore (under orthochronous Lorentz transformations9) ψ̄ψ → ψ̄S−1Sψ = ψ̄ψ

is a scalar and ψ̄γµψ → ψ̄S−1γµSψ = Lµνψ̄γ
νψ a vector, as is necessary for the

conserved current (2.20) to make sense.

More generally, ψ̄γµ1 · · · γµkψ transforms as a tensor of rank k. Inserting addi-

tionally the matrix γ5 does not change that as long as we consider Lorentz transfor-

mations L ∈ L↑+, because [γ5, Sµν ] = 0. But under the parity transformation we pick

9We exclude time reversal here, which would lead to a change of sign of ψ̄ψ. In the full quantum
field theory, ψ̄ψ is made invariant by representing time reversal by an anti-linear transformation.
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up an extra minus sign:

ψ̄′(x′)γ5ψ′(x′) = ψ̄(x) P−1γ5P︸ ︷︷ ︸
γ0γ5γ0=−γ5

ψ(x) = −ψ̄(x)γ5ψ(x). (2.55)

ψ̄γ5ψ is therefore called pseudo-scalar, and similarly ψ̄γµ1 · · · γµkγ5ψ pseudo-tensor.

In fact, any 4×4 spinor matrix Γ can be decomposed in a linear combination of the

unit matrix or products of γ-matrices and thus into terms with well-defined Lorentz

transformation properties when sandwiched by Dirac fields. Only antisymmetrized

products of γ-matrices must be considered, because (2.12) reduces symmetric com-

binations. The resulting “Clifford algebra” is spanned by the basis

ΓS = 1, ΓµV = γµ, ΓµνT =
i

2
[γµ, γν ] =: σµν , ΓµA = γµγ5, ΓP = γ5 (2.56)

corresponding to scalar, vector, (antisymmetric) tensor, axial vector, and pseudo-

scalar, respectively, with a total of 1 + 4 + 6 + 4 + 1 = 16 = 42 matrices. (In

n (even) dimensions, where the dimension of Dirac matrices is 2n/2, an analogous

decomposition is possible because 1 + n+
(
n
2

)
+ . . .

(
n
n

)
= 2n = (2n/2)2.)

2.5 Higher spin

Higher, non-integer spin fields can be obtained by replacing the spinor ψ by spinor

fields with additional Lorentz indices, ψµ.... These can again be subjected to a Dirac

equation which acts on the spinor components only. In general, such fields will be

highly reducible.

For example, a vector-spinor ψµ contains spin 1
2

and 3
2
. The quantity γµψµ is a

Dirac spinor, so this can be used to project out the spin 1
2

content. The two equations

(i /∂ −m)ψµ(x) = 0, γµψµ(x) = 0 (2.57)

(Rarita-Schwinger equations) therefore describe a spin-3
2

field.

However, it is rather difficult to find a consistent quantum theory of spin-3
2

field

interacting with other quantum fields.10

10Minimal coupling to electromagnetic fields for example leads to the so-called Velo-Zwanziger
anomaly.
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3 Solutions of the Dirac equation

3.1 Plane-wave solutions

The simplest solution of the Klein-Gordon equation are plane waves e∓ikµxµ
with

k2 = m2, where for k0 > 0 the minus sign corresponds to positive energy (E = i∂t).

For plane-wave solutions of the Dirac equation we make the ansatz

ψ(+)
α (x) = e−ik·xuα(k), ψ(−)

α (x) = e+ik·xvα(k) (3.1)

and obtain from (i /∂ −m)ψ(±) = 0 the algebraic equations

( /k −m)u(k) = 0, ( /k +m)v(k) = 0 . (3.2)

Hermitian conjugation and use of (2.17) shows that the corresponding Dirac

adjoints obey similarly

ū(k)( /k −m) = 0, v̄(k)( /k +m) = 0 . (3.3)

In the rest frame kµ = (m,~0), and we have

(γ0 − 1)u(m,~0) = 0, (γ0 + 1)v(m,~0) = 0. (3.4)

In the Dirac representation (2.14), γ0 =

(
12 0

0 −12

)
, so any spinor

(
ϕ
0

)
with

only upper components is a solution for u; conversely, any spinor of the form
(

0
χ

)
is

a solution for the negative-energy case v. A basis is given by

u(1)(m,~0) =


1

0

0

0

 , u(2)(m,~0) =


0

1

0

0

 , v(1)(m,~0) =


0

0

1

0

 , v(2)(m,~0) =


0

0

0

1

 ,

(3.5)

which moreover gives the eigenvectors of the spin operator 1
2
Σ3 = 1

2
σ3 ⊕ σ3 with

eigenvalues +1
2
,−1

2
,+1

2
,−1

2
, respectively.

Note that in other representations of the Dirac matrices, the above unit spinors

would have a different interpretation. For example, in the chiral representation (2.15)

the rest-frame spinors with positive and negative energy have the form u =
(
ϕ
ϕ

)
,

v =
(
χ
−χ

)
.

Solutions for ~k 6= 0 can be obtained by a Lorentz transformation which subjects

u and v to a linear transformation with the matrix S(L). For Lorentz boosts in x-

direction we have calculated S(L) in the Dirac representation in the previous section.
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It is simpler, though, to construct the general solution by using

( /k −m)( /k +m) = k2 −m2 = 0 (3.6)

and writing

u(k) =
1

N
( /k +m)u(m,~0) =

1

N

(
(E +m)ϕ

~σ · ~k ϕ

)
(3.7)

v(k) =
1

N
(− /k +m)v(m,~0) =

1

N

(
~σ · ~k χ

(E +m)χ

)
(3.8)

where E ≡ k0 and N =
√

2m(m+ E) is fixed by

ū(a)(k)u(b)(k) = δab, v̄(a)(k)v(b)(k) = −δab, ū(a)(k)v(b)(k) = 0 = v̄(a)(k)u(b)(k)

(3.9)

In the Dirac representation, a positive-energy spinor is thus seen to be dominated

by the upper components as long as the momentum does not get highly relativistic,

i.e. |~k| � m.

3.2 Klein’s paradox

For the time being, the only sensible solutions seem to be those with positive energy.

It turns out, however, that it is inconsistent to restrict oneself to these only.

Let us consider the simple example of reflection of plane waves on a potential

step

V (~x) =

{
0 for x1 < 0

V for x1 ≥ 0
(3.10)

For x1 < 0 take an incident positive-energy plane wave travelling in positive x1

direction with momentum k =
√
E2 −m2, E > m, and spin up (in x3 direction).

In the Dirac representation, the relevant spinor is given by (3.7) or by applying the

matrix (2.37) onto u(1)(m,~0),

ψin = a eikx1


1

0

0
k

E+m

 (3.11)

where a is a constant and the oscillatory factor e−iEt has been dropped.
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For the reflected wave we make the ansatz of plane waves travelling in negative

x1 direction with a superposition of spin up and spin down,

ψrefl = b e−ikx1


1

0

0
−k
E+m

+ b′ e−ikx1


0

1
−k
E+m

0

 , (3.12)

and similarly for the transmitted wave

ψtrans = d eik
′x1


1

0

0
k′

E−V+m

+ d′ eik
′x1


0

1
k′

E−V+m

0

 , (3.13)

but with k′ =
√

(E − V )2 −m2.

Continuity requires that ψin + ψrefl

∣∣∣
x1=0

= ψtrans

∣∣∣
x1=0

. This gives b′ = d′ = 0 (i.e.

no spin flips) and

b

a
=

1− ρ
1 + ρ

,
d

a
=

2

1 + ρ
, ρ :=

k′

k

E +m

E − V +m
. (3.14)

As long as E −m > V , there is partial reflection and partial transmission with

reflection and transmission coefficients

R =
jrefl
jin

=

(
b

a

)2

=

(
1− ρ
1 + ρ

)2

, T =
jtrans

jin
= 1− jrefl

jin
=

4ρ

(1 + ρ)2
(3.15)

with R→ 1 and T → 0 as the barrier is increased to V → E −m.

When V > E −m, k′ becomes imaginary and there is exponential decay with a

penetration length

d = 1/
√
m2 − (V − E)2. (3.16)

However, something very strange happens when V is increased further and fur-

ther. First, the penetration length decreases as one would expect. But obviously,

there is a minimum at d = 1/m, the Compton wavelength (≈ 4 × 10−13m for elec-

trons), which is reached when V − (E − m) = m. Increasing V still further no

longer restricts the penetration region but makes it larger again. Even weirder,

when V − (E −m) > 2m, k′ becomes real again, and ψtrans oscillatory. In this case,

ρ < 0, and therefore jtrans < 0 and jrefl > jin.

This is Klein’s paradox. It shows that the Dirac equation can be interpreted as a

single-particle theory only as long as there are no external forces and energies which

are comparable to the mass scale m.
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Although the above example is rather artificial, it points to phenomena such as

pair creation in strong fields. It also indicates that in a relativistic theory there

is, besides the well-known uncertainty principle, a fundamental lower limit to the

localizability of a single particle, which is given by its Compton wavelength.

Let us confirm this latter statement by an attempt to construct a localized wave

packet. At time t = 0 we take

ψ(0, ~x) = e−~x
2/(2D2)w (3.17)

with a fixed spinor w =
(
ϕ
0

)
.

The general solution of the free Dirac equation is given by a superposition of the

plane waves obtained in the preceding section,

ψ(t, ~x) =

∫
d3p

(2π)3

m

E

2∑
a=1

{
b(p; a)u(a)(p)e−ip·x + d∗(p; a) v(a)(p)eip·x

}
(3.18)

where b and d∗ are the expansion coefficients of positive and negative-energy solutions

(the factor m/E is introduced for convenience only). These are determined by the

initial condition (3.17) through∫
d3xe−i~p~xψ(0, ~x) = (2πD2)3/2e−~p

2D2/2w =
m

E

2∑
a=1

{
b(p; a)u(a)(p) + d∗(p̃; a) v(a)(p̃)

}
(3.19)

where p̃ := (p0,−~p).
As one easily verifies from the explicit expressions (3.7) and (3.8), the following

orthogonality relations hold

u†(a)(k)u(b)(k) =
E

m
δab = v†(a)(k)v(b)(k),

v†(a)(k̃)u(b)(k) = 0 = u†(a)(k̃)v(b)(k). (3.20)

These we can use to calculate

b(p; a) = (2πD2)3/2e−~p
2D2/2 u†(a)(p)w

d∗(p; a) = (2πD2)3/2e−~p
2D2/2 v†(a)(p)w. (3.21)

From (3.7) and (3.8) we see that the ratio of the amplitudes of negative-energy

solutions over positive-energy ones is of the order of d∗/b ∼ |~p|/(E + m). As long

as D is much larger than the Compton wavelength, D � 1/m, there are essential

contributions only from |~p| � m, and thus d∗/b� 1. However, if one tries to localise
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the wavefunction to be comparable or smaller than the Compton wavelength, the

negative-energy solutions become important and can no longer be neglected.

The presence of non-negligible negative-energy solutions has a curious conse-

quence for the behaviour of the current density ~j = ψ̄~γψ. While this current equals

〈~p/E〉 (the group velocity of the wave packet) so long as there is only a positive-energy

component, with both components there is also an interference term involving e2iEt.

Because E ≥ m, this introduces an oscillatory contribution with extremely high

frequencies ≥ 2m ≈ 2× 1021Hz called “zitterbewegung”.

Despite these limitations, the Dirac equation used as a generalization of the

Schrödinger equation is of great importance and we shall elaborate on it further

before setting up the full quantum field theory, bearing in mind however that a

single (or fixed-number) particle theory makes sense only as long as all energies

involved are well below the particles’ rest mass and therefore all length scales are

much larger than the Compton wavelength.

3.3 Electromagnetic coupling

We begin by recapitulating the relativistic form of Maxwell’s equations, using units

where c = 1 and the Coulomb force between charges is Q1Q2/4πr (Heaviside units).

The electric and magnetic fields are part of an antisymmetric tensor

F µν = −F νµ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (3.22)

Combining the electric charge and current in

jµ = (ρ,~j) (3.23)

one half of Maxwell’s equation, namely,

div ~E = ρ, rot ~B − ∂t ~E = ~j (3.24)

can be written covariantly as

∂µF
µν = jν (3.25)

and the other half

div ~B = 0, rot ~E + ∂t ~B = 0 (3.26)
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in terms of the “dual” field strength tensor F̃ µν := 1
2
εµνσρFσρ as

∂µF̃
µν = 0. (3.27)

F̃ is obtained from (3.22) by substituting ~E → − ~B and ~B → ~E, so (3.27) expresses

the absence of magnetic sources. The totally antisymmetric tensor εµνσρ equals +1

(-1) for (µ, ν, σ, ρ) an even (odd) permutation of (0,1,2,3). Note that ε0123 = −ε0123.

The second set of Maxwell’s equations (3.27) can be solved by writing

F µν = ∂µAν − ∂νAµ, Aµ = (φ, ~A) (3.28)

where the 4-potential Aµ is determined only up to local gauge transformations δAµ =

∂µΛ(x) which leave F µν invariant.

The source-containing set of Maxwell’s equations (3.25) are compatible with the

antisymmetry of F µν only if j is a conserved current: ∂νj
ν = ∂ν∂µF

µν ≡ 0.

In the Dirac theory, jµ = eψ̄γµψ is a suitable candidate for the electromagnetic

current. Conversely, the Dirac field can be coupled to the electromagnetic field by

the “minimal” substitution ∂µ → ∂µ + ieAµ, leading to

(i /∂ − e /A(x)−m)ψ(x) = 0. (3.29)

The arbitrariness of the gauge potential A due to gauge transformations Aµ(x) →
Aµ(x) + ∂µΛ(x) can be compensated by a local phase rotation ψ(x)→ e−ieΛ(x)ψ(x).

The latter shows that electrodynamics is associated with the (Abelian) gauge group

U(1) — unitary matrices with dimension 1. It is the simplest example of the more

general class of Yang-Mills theories, where Λ becomes a nontrivial matrix built from

the generators of some generally nonabelian group.

Writing (3.29) in terms of the ~α and β matrices we have

i
∂ψ

∂t
= (~α · ~p+ βm)︸ ︷︷ ︸

H0

ψ +
(
−e~α · ~A+ eφ

)
︸ ︷︷ ︸

Hint

ψ. (3.30)

This resembles the interaction of a classical particle in an external field with ~α playing

the role of velocity. Indeed, we have ~̇x = i[H,~x] = ~α.

To study the physical content of the Dirac equation coupled to electromagnetic

fields we shall first consider its nonrelativistic limit.

3.3.1 Nonrelativistic limit

In the limit of E−m� m, it is appropriate to separate off the large energy associated

with the particle’s rest mass and to write

ψ(t, ~x) = e−imt
(
ϕ(t, ~x)

χ(t, ~x)

)
. (3.31)
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In the standard Dirac representation (2.14), this gives

i
∂ϕ

∂t
= ~σ · (~p− e ~A) χ+ eA0 ϕ (3.32)

i
∂χ

∂t
= ~σ · (~p− e ~A) ϕ+ eA0 χ− 2mχ (3.33)

The latter equation is dominated by the mass term, against which iχ̇ can be neglected

in the nonrelativistic limit, so this equation can be solved algebraically. Assuming

further that eA0 � m, we have

χ ≈ 1

2m
~σ · (~p− e ~A)ϕ� ϕ. (3.34)

The Dirac spinor is thus seen to be separated in large and small components ϕ and

χ, with ϕ being determined by the so-called Pauli equation obtained by inserting

(3.34) into (3.32),

i
∂ϕ

∂t
=

[
1

2m
(~σ · ~π)2 + eA0

]
ϕ, ~π := ~p− e ~A(x). (3.35)

Because σiσj = 1
2
{σi, σj}+ 1

2
[σi, σj] = δij + iεijkσk we can rewrite this according to

(~σ · ~π)2 = ~π2 +
i

2
εijkσk[πi, πj] = ~π2 − e εijk∂iAj︸ ︷︷ ︸

Bk

σk (3.36)

yielding the alternative version

i
∂ϕ

∂t
=

[
1

2m

(
~p− e ~A

)2

+ eA0 − e

2m
~σ · ~B

]
ϕ . (3.37)

In the special case of a weak constant magnetic field, ~A = 1
2
~B × ~x, one has

(~p − e ~A)2 ≈ ~p2 − e (~x × ~p) · ~B and the operator on the right-hand-side of the Pauli

equation becomes

HPauli ≈
~p2

2m
+ eA0 − e

2m︸︷︷︸
µB

(
~L+ 2~S

)
· ~B, ~S ≡ 1

2
~σ . (3.38)

The magnetic moment associated with spin is thus seen to have an anomalous fac-

tor of 2. This gyromagnetic ratio g = (|magnetic moment|× |spin|)/(Bohr magneton

µB) = 2 is our first nontrivial prediction of the Dirac theory, and it is indeed in good

agreement with the actual magnetic moment of electrons and muons11; the small

deviations from g = 2 that are observed experimentally will find their explanation

in the full quantum electrodynamics.

11The gyromagnetic ratio for protons and neutrons is however substantially different from 2,
pointing to their important internal structure.
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In the relativistic Dirac equation, the spin-dependent interactions can be isolated

by acting on (3.29) with (i /∂ − e /A+m). In analogy to the steps leading from (3.35)

to (3.37) one obtains[
(i /∂ − e /A)2 −m2

]
ψ =

[
(i∂ − eA)2 −m2 − e

2
σµνFµν

]
ψ = 0, σµν :=

i

2
[γµ, γν ]

(3.39)

with 1
2
~σµνFµν = (i~α · ~E + ~Σ · ~B).

3.4 Foldy-Wouthuysen transformation

By decoupling large and small components of a Dirac spinor in the nonrelativistic

approximation we have been able to highlight some of its physical content. Such a

procedure can be carried out systematically in a series expansion in powers of Ekin/m

and has been worked out by Foldy and Wouthuysen (1950).

The goal is to find a unitary transformation

ψ′ = eiSψ (3.40)

for ψ of (3.30) such that in

i∂tψ
′ = eiS

(
He−iS − i(∂te−iS)

)
ψ′ =: H ′ψ′ (3.41)

H ′ takes a block-diagonal form, at least up to some order of a nonrelativistic expan-

sion.

A familiar similar problem is the diagonalization of a Hamilton operator H =

σxBx+σzBz. This is achieved by a rotation about the y-axis by e
i
2
σyθ = e

1
2
σzσxθ with

tan θ = Bx/Bz.

3.4.1 Free Dirac equation

In the case of the free Dirac equation where H = ~α · ~p + βm with α and β as given

in the Dirac representation (2.14), we have a similar structure with σx ↔ ~α · ~p and

β ↔ σz. This motivates an ansatz of the form

eiS = exp (β~α · ~pθ(p)/|~p|) = exp

(
1

|~p|
~γ · ~pθ(p)

)
. (3.42)

Because
(
~γ·~p
|~p|

)2

= −1, we can easily calculate

eiS = cos θ +
~γ · ~p
|~p|

sin θ (3.43)
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and

H ′ = eiSHe−iS =

(
cos θ + β

~α · ~p
|~p|

sin θ

)
(~α · ~p+ βm)

(
cos θ − β ~α · ~p

|~p|
sin θ

)
= (~α · ~p+ βm)

(
cos θ − β ~α · ~p

|~p|
sin θ

)2

︸ ︷︷ ︸
exp(−2β ~α·~p

|~p| θ)

= (~α · ~p+ βm)

(
cos 2θ − β ~α · ~p

|~p|
sin 2θ

)

= ~α · ~p
[
cos 2θ − m

|~p|
sin 2θ

]
+ β

[
m cos 2θ +

~p2

|~p|
sin 2θ

]
(3.44)

In order that H ′ becomes diagonal, the first of the square brackets has to vanish.

This leads to tan 2θ = |~p|
m

, which entails sin 2θ = |~p|
E

, cos 2θ = m
E

, for E ≡
√
~p2 +m2,

and so

H ′ = β
√
~p2 +m2 =

(√
~p2 +m212 0

0 −
√
~p2 +m212

)
(3.45)

We have therefore managed to diagonalize the Dirac Hamitonian, which clearly dis-

plays the solutions corresponding to positive and negative energies.

Note however that the transformation leading to (3.45) is nonlocal. In configura-

tion space, the FW-transformed spinor (3.40) would have to be written as a nontrivial

integral
∫
dx′〈x|eiS|x′〉ψ(x′) over all of 3-space, where the main contribution comes

from a neighbourhood of x with radius 1/m. Also, the usual ~x-operator changes its

meaning when applied directly to ψ′. As such it is referred to as “mean location”.

Transformed back into the standard formulation it corresponds to the nonlocal op-

erator ~xmean = e−iS~xeiS. If one defines similarly a mean angular momentum and a

mean spin operator, these are found to commute with the free Hamilton operator,

in constrast to the usual local quantities.

3.4.2 Interacting Dirac equation

When external fields are present, eiS will have to depend explicitly on space and

time12 as well. This makes a solution in closed form impossible in general and one

has to be content with an approximate solution. We shall consider a nonrelativistic

expansion, where |~p|/m, | ~A|/m, and |A0|/m are supposed to be small parameters.

The interaction Hamiltonian

H = βm+O + E ≡ βm+ (~α · (~p− e ~A)) + eA01 (3.46)

is dominated by the block-diagonal mass term. The aim is to get rid of the off-

diagonal (“odd”) term O.

12A time dependence moreover leads to a shift of the energy eigenvalues.
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In the free case, this was achieved by iS = βOfreeθ(p)/|~p| with θ = 1
2
arctan(|~p|/m).

For |~p|/m� 1 we can approximate θ ≈ |~p|/2m.

As a first step, we can try eiS = e
1

2m
βO. This gives H ′ = βm + O′ + E ′ where

O′ = O( 1
m

). This procedure can now be repeated with eiS
′
= e

1
2m

βO′
and so forth,

successively increasing the order of the odd terms.

After 3 iterations, one finds13 in terms of “mean” operators

H ′′′ = βm+ E ′′′ +O(
1

m3
)

= β

[
m+

(~p− e ~A)2

2m
− ~p4

8m3

]
+ eφ− e

2m
β~σ · ~B (3.47)

+
(
−i e

8m2
~σ · rot ~E − e

4m2
~σ · ( ~E × ~p)

)
(3.48)

− e

8m2
~∇ · ~E (3.49)

The first terms (3.47) are what we have found in the Pauli equation (3.37) except

that there is now a relativistic correction term to the kinetic energy.

The terms (3.48) contain spin-orbit interactions. With ~p ≈ m~v, the latter of the

two reads

−1

2

e

2m
~σ · ( ~E × ~v).

( ~E × ~v) is the magnetic field as seen from a particle moving with velocity ~v through

the electric field ~E, −e
2m

is the usual coefficient of the magnetic dipol energy as in

(3.47), and the extra factor 1
2

can be understood as the effect of Thomas precession,

which happens to reduce the gyromagnetic factor g = 2 to the standard value 1.

In a static, spherically symmetric potential, rot ~E = 0 and the spin-orbit terms

(3.48) reduce to
e

4m2r

dφ

dr
~L · ~σ.

The last term (3.49) is called Darwin term. It can be interpreted as arising from

fluctuations of the position of an electron ~x with 〈δ~x〉 = 0 but 〈(δ~x)2〉 > 0, which

entails a shift of the electrostatic energy according to

e〈φ(~x+ δ~x)〉 = eφ(~x) +
e

2

∂2φ

∂xi∂xj
〈δxiδxj〉︸ ︷︷ ︸
1
3
δij〈(δ~x)2〉

= eφ(~x) +
e

6
4φ︸︷︷︸
−div ~E

〈(δ~x)2〉 (3.50)

The fundamental uncertainty of position that we have observed before (zitterbewe-

gung) was of the order of the Compton wavelength, so we expect 〈(δ~x)2〉 ∼ 1/m2.

So (3.50) is consistent in sign and order of magnitude with the Darwin term (3.49).

13See e.g. Bjorken/Drell: Relativistic quantum mechanics, ch. 4.
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3.5 Hydrogen-like atoms

3.5.1 Spinor harmonics

The free Hamilton operator H0 = ~α · ~p + βm commutes with the total angular

momentum ~J = ~L+ ~S, ~S = 1
2
~Σ, but not separately with ~L or ~S. The same holds true

in a spherical symmetric electrostatic potential, because [~L, f(r)] = 0 = [~Σ, f(r)],

H = ~α · ~p+ βm+ eA0(r), [H, ~J ] = 0. (3.51)

Intuitively, one might expect that if not all of ~S then at least ~S · ~J should be

conserved, which would be the case for a spin in precession around the conserved

total angular momentum. However, one finds

[H, ~Σ · ~J ] = [H, ~Σ] · ~J = 2i(~α× ~p) · ~J. (3.52)

As a second guess, let us try β~Σ · ~J

[H, β~Σ · ~J ] = [H, β]︸ ︷︷ ︸
−2β~α·~p

~Σ · ~J + β [H, ~Σ] · ~J (3.53)

This can be streamlined by using that ~α = γ5~Σ and rewriting

~α · ~p ~Σ · ~J = γ5 ~Σ · ~p ~Σ · ~J = γ5~p · ~J + i(~α× ~p) · ~J (3.54)

which shows that

[H, β~Σ · ~J ] = −2βγ5~p · ~J = −βγ5~p · ~Σ = −β~p · ~α =
1

2
[H, β]. (3.55)

Hence,

[H, β(~Σ · ~J − 1

2
)] =: [H,K] = 0, (3.56)

so the “spin-orbit” operator K defines a further conserved quantity. Using that

(~Σ)2 = 3, it can be alternatively expressed as

K = β(~Σ · ~J − 1

2
) = β(~Σ · ~L+ 1) = β( ~J2 − ~L2 +

1

4
). (3.57)

In the standard Dirac representation where ~Σ = ~σ ⊕ ~σ, this is a block-diagonal

operator with just a different sign in the upper and lower blocks. We can therefore

construct eigenstates of ~J2, Jz, and K out of 2-component spinors ϕ which are

eigenstates of ~J2, Jz, and (~σ · ~L+ 1). The eigenvalues of the latter are

k = j(j + 1)− l(l + 1) +
1

4
.
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Because j = l ± 1
2
, there are only two possibilities

k =

{
j + 1

2
for j = l + 1

2

−(j + 1
2
) for j = l − 1

2

(3.58)

The eigenspinors ϕ are thus characterised by the values of j, m, and sign(k), where

the latter is also the sign in j = l ± 1
2
. They are called spinor harmonics and are

linear combination of products of the eigenvectors of σz,

χ+ =

(
1

0

)
, χ− =

(
0

1

)
,

and the spherical harmonics Yl,lz(θ, ϕ). With the relevant Clebsch-Gordan coefficients

they are given explicitly by

ϕ
(+)
jm (θ, ϕ) =

1√
2l + 1

(√
l+m+ 1

2
Yl,m− 1

2
(θ, ϕ)

√
l−m+ 1

2
Yl,m+ 1

2
(θ, ϕ)

)
, (3.59)

ϕ
(−)
jm (θ, ϕ) =

1√
2l + 1

( √
l−m+ 1

2
Yl,m− 1

2
(θ, ϕ)

−√l+m+ 1
2
Yl,m+ 1

2
(θ, ϕ)

)
. (3.60)

For a given value of j, the spinor harmonics with different sign of k have opposite

parity (l differs by one). They are transformed into each other by

~σ · ~x
|~x|

ϕ
(±)
jm = ϕ

(∓)
jm . (3.61)

This can be inferred from the following properties of ~σ · ~̂x := ~σ · ~x/|~x| (exercises!):

[~σ · ~̂x, ~J ] = 0, from which it follows that j,m are unchanged;

{~σ · ~̂x, ~σ · ~L+ 1} = 0, which implies that the sign of k is changed;

(~σ · ~̂x)2 = 12, which requires that ~σ · ~̂xϕ(±)
jm = ηϕ

(∓)
jm with η2 = 1. η = 1 is secured

by the particular choice of phase in (3.59), (3.60).

3.5.2 Separation of variables

In the spherically symmetric case (3.51) one can separate the dependence of the

Dirac spinor in Hψ = Eψ on angular variables by the ansatz

ψ =
1

r

(
ig(r)ϕκjm(θ, ϕ)

f(r)ϕ−κjm(θ, ϕ)

)
(3.62)

where κ = sign(k), which introduces two functions f(g) and g(r) for a given set of

j,m, κ.
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This gives

(E −m− eA0)
ig

r
ϕκjm = ~σ · ~p f

r
ϕ−κjm (3.63)

(E +m− eA0)
f

r
ϕ−κjm = ~σ · ~p ig

r
ϕκjm. (3.64)

The parity of the spinor harmonics on the right-hand side can be reversed by inserting(
~σ · ~̂x

)2

= 12 and rewriting

~σ · ~p =
(
~σ · ~̂x

)2

~σ · ~p = ~σ · ~̂x 1

r

(
~x · ~p+ i~σ · ~L

)
= ~σ · ~̂x 1

ir

( ∂
∂r
r − (1 + ~σ · ~L)︸ ︷︷ ︸

∓k for ϕ∓

)
.

The spinor harmonics therefore drop out, yielding the radial equations

(E −m− eA0) g(r) + (
d

dr
+
k

r
) f(r) = 0, (3.65)

(E +m− eA0) f(r)− (
d

dr
− k

r
) g(r) = 0. (3.66)

3.5.3 Exact solutions for the Coulomb potential

We shall now consider the motion of an electron in the Coulomb potential A0 = − Ze
4πr

,

assuming that the central charge is sufficiently heavy to neglect its dynamics.

The asymptotic behaviour of the radial functions is determined by the r → ∞
limit of (3.65), (3.66), leading to f, g ∼ exp(±

√
m2 − E2 r). A bound state has

E < m, and the negative sign has to be chosen for normalizability.

Separating off this asymptotic behaviour, we make the ansatz

f(r) =
√

1− E
m
e−λr (F1 − F2)(ρ), g(r) =

√
1 + E

m
e−λr (F1 + F2)(ρ) (3.67)

with λ :=
√
m2 − E2, ρ := 2λr. A generalized power series ansatz

F1,2 = ργ(a1,2 + b1,2ρ+ . . .)

gives (exercise!)

γ =
√
k2 − Z2α2 (3.68)

and a power series for ρ−γF1,2 corresponding to a degenerate hypergeometric function

F (a, b; ρ), namely

ρ−γF1(ρ) = AF
(
γ + 1− ZαE

λ
, 2γ + 1; ρ

)
, (3.69)

ρ−γF2(ρ) = B F
(
γ − ZαE

λ
, 2γ + 1; ρ

)
, (3.70)
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where A/B = (γλ − ZαE)/(kλ + Zαm). The degenerate hypergeometric function

grows exponentially like eρ for ρ→∞ unless its first argument vanishes or equals a

negative integer, in which case it reduces to a polynomial. So (3.70) gives a quantiza-

tion condition for the energy in terms of a nonnegative radial quantum number nr,

γ − ZαE

λ
= −nr, nr = 0, 1, 2, . . . (3.71)

with nr giving the degree of the polynomial in (3.70). nr = 0 is excluded for (3.69)

unless A = 0. Now A/B ∝ nr and thus vanishes for nr = 0, provided however that

k > 0 — when nr = 0 one finds that |k| = Zαm/λ, so that for k < 0 the denominator

in A/B also vanishes, leading to A/B = −m/E 6= 0 instead. So for nr = 0 only

κ = +1 leads to a normalizable solution; for each other value of nr, there are two

different solutions corresponding to the two different signs κ.

Solving (3.71) for E gives

E = Enj = m

[
1 +

Z2α2

(γ + nr)2

]− 1
2

= m

1 +
Z2α2(

n− (j + 1
2
) +

√
(j + 1

2
)2 − Z2α2

)2


− 1

2

(3.72)

where in view of γ = |k|+O(α2) we have introduced the main quantum number

n := nr + |k| = nr + j +
1

2
, n = 1, 2, . . . (3.73)

Expanding (3.72) in powers of Z2α2 we find

Enj = m

{
1− Z2α2

2n2
− Z4α4

n3(2j + 1)
+

3Z4α4

8n4
+O(α6)

}
. (3.74)

The term proportional to α2 corresponds to the nonrelativistic Balmer spectrum. It

is independent of j thanks to an accidental dynamical O(4) symmetry of the non-

relativistic Coulomb problem. The degeneracy in j is lifted by the subsequent terms

(“fine structure”) resulting from relativistic effects and the spin-orbit coupling.14

The remaining degeneracy is twofold in terms of l = j ± 1
2
, except for nr = 0, i.e.

j = n− 1
2
, where the maximal value of l = n− 1 for a given n is reached.

14For spinless particles, the Klein-Gordon equation leads to a similar fine structure formula but
with j + 1

2 = 1, 2, . . . replaced by l + 1
2 = 1

2 ,
3
2 , . . .. This differs from Sommerfeld’s fine structure

formula which had l + 1 instead and accidentally produced the correct result without taking into
account spin. The failure to reproduce Sommerfeld’s result was the reason that Schrödinger gave
up on the relativistic (Klein-Gordon) equation in favour of his nonrelativistic one.
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States with higher values of j but equal n are shifted to higher energies by about

4.5Z4 × 10−5eV (for n = 2), which is to be compared with the Rydberg energy

≈ 13.6 eV.

The lowest energy eigenstates in increasing order
in standard spectroscopic notation n(l)j:

n j l = 0 l = 1 l = 2 . . . nr

1 1
2

1s1/2 0

2 1
2

2s1/2 2p1/2 1

2 3
2

2p3/2 0

3 1
2

3s1/2 3p1/2 2

3 3
2

3p3/2 3d3/2 1

3 5
2

3d5/2 0

Clearly, for too large values of Z, the above results cease to hold: when Z2α2 >

k2 ≥ 1, that is when Z >∼ 137, γ in (3.72) turns imaginary and the energy eigenvalues

of the lowest-lying states become complex. Then also the wave function develops an

essential singularity at r = 0: ψ → rγ−1 ∼ 1
r
cos(|γ| ln r). However, for such extreme

field strength the binding energy becomes comparable to the rest mass of the electron

and therefore we should expect a breakdown of the single-particle theory.

Actually, the Dirac solution of the Coulomb problem is also singular for Z � 137

for all solutions with |k| = 1, i.e. j = 1
2
. Then γ ≈ |k|(1 − Z2α2

2|k| ) < 1 for |k| = 1,

so ψ ∼ rγ−1 is singular at the origin, although square integrable. For small Z

this behaviour is however noticable only for extremely small values of r, because

ψ ∼ r−Z
2α2/2 ≈ r−Z

2/16300.

The exact solutions for the Dirac equation in a Coulomb potential are still only

an approximate solution for the real hydrogen and hydrogen-like atoms. There are

a number of other effects that need to be taken into account:

Hyperfine structure: The nucleus of an atom has a magnetic moment which

couples to the total angular momentum of the electron. In the hydrogen atom, every

level is split into narrow doublets. Treated nonrelativistically, the energy corrections

are approximately

〈Hhf〉 ∝ ~σe · ~σp|ψ(0)|

with ψn,l=0(0) =
√

1
π
(mZα

n
)3, ψn,l>0(0) = 0, and ~σe · ~σp equals +1 and −3 in the

triplett and singlett states, respectively. So the main effect is a splitting of the s

states, with the splitting of the 1s1/2 state being responsible for the 21cm line that
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is famous for its role in radio astronomy. Compared to the fine-structure splitting,

the hyperfine splitting is suppressed by an extra factor of me/mp ≈ 1/1800.

Nuclear effects: The finite size of the nucleus and its charge distribution modifies

the electrostatic potential close to the origin. This again affects mainly the s states.

The slightly different energy levels that result for different isotopes can even be used

for isotopic separation.

Two-body corrections: As a first approximation, the dynamics of the nucleus with

mass mN can be taken into account by using the reduced mass m−1 = m−1
e + m−1

N

in all the terms of (3.74) other than the rest mass. However, ultimately the recoil of

the nucleus has to be taken into account in a relativistic manner. This gives further

corrections that are of the order of magnitude of the hyperfine splitting.

Radiative corrections: An obvious shortcoming of the above results is that the

excited states are in reality unstable and should not correspond to stationary solu-

tions. The excited states instead have a finite width arising from the possibility of

emission of photons.

There are however more effects resulting from interactions with the quantized

electromagnetic field, whose systematic treatment requires quantum field theoretical

methods which we shall develop later on.

The most important of these effects in the hydrogen atom is the so-called Lamb-

shift (Lamb and Retherford, 1947) of the ns1/2 states against np1/2. In particular,

the 2s1/2 state is shifted towards higher energies by an amount of about one-tenth

of the fine structure split between 2p1/2 and 2p3/2.

Qualitatively, this effect can be described by the same kind of argument as in the

discussion of the Darwin term in the previous section. If we consider fluctuations in

the position caused by a quantized electromagnetic field, the effect is like that of the

relativistic zitterbewegung, but it is in addition to the latter which is already taken

into account by the Dirac equation.

Analogously to (3.50), we may expect

∆HLamb =
e

6
4A0︸︷︷︸

4πZαδ3(~x)

〈(δ~x)2〉. (3.75)

The main effect will therefore occur for s states, because ψn,l>0(0) = 0 for the

Schrödinger wave functions of the hydrogen atom,

∆ELamb(n) =
2πZα

3
|ψn,0(0)|2〈(δ~x)2〉 ∝ Z4α5m

n3
(3.76)

when we assume that 〈(δ~x)2〉 ∝ α/m2 on dimensional grounds and because the

induced fluctuations involve electromagnetic interactions.
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Evaluated for Z = 1 and n = 2, (3.76) gives a frequency of ∼500 MHz for the

order of magnitude of the Lamb shift, which indeed fits roughly to the experimental

value ∆Eexp
Lamb(2) ≈ 1058 MHz.

4 Towards a many-body theory

4.1 Hole theory

So far we have interpreted the Dirac equation as a one-particle wave theory by simply

ignoring the solutions of negative energy. We have however seen that negative-energy

solutions necessarily appear when one tries to construct a localized wave packet.

Moreover, despite its success to explain the magnetic moment of the electron and

the fine structure of the hydrogen atom, Klein’s paradox and also the instability of

the lowest energy eigenstates for the Coulomb problem with Z >∼ 1/α indicate that

the one-particle theory has serious theoretical limitations. These can no longer be

ignored when, in attempts to further refinements, interactions with radiation fields

are to be included. One inevitably would find transitions of any positive-energy state

to the negative-energy ones, releasing infinite energy at an infinite rate.

A solution was proposed in 1930 by Dirac in which it is postulated that, in

the vacuum, all negative energy levels are filled by electrons. Because of the Pauli

exclusion principle, no positive-energy state can then decay into a negative-energy

one. However, it should be possible to excite one of the electrons of the “Dirac sea”

such that there appears both a positive-energy electron and a hole in the Dirac sea.

Compared to the vacuum state which is defined as a completely filled Dirac sea, the

absence of a negative charge with negative energy appears as a state with positive

electric charge, positive energy, and flipped spin. Dirac’s hole theory therefore pre-

dicts the existence of particles with the properties of electrons except for a positive

charge: positrons, which were discovered 1932 by Anderson (without knowing of

Dirac’s prediction). These can annihilate with electrons by the emission of radiation

with energy > 2mc2 ≈ 1MeV or can be produced if such energy is available.

Besides the prediction of antiparticles, Dirac’s hole theory anticipates qualita-

tively certain physical effects such as vacuum polarization which indeed occur. Vac-

uum polarization means that an electron with positive energy repels electrostatically

the electrons in the Dirac sea, leading to a positive charge density of the vacuum

around an electron such that at large distances the apparent charge should be weaker

than at smaller ones. Indeed, at typical current collider energies ∼ mW ≈ 80 GeV,
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which corresponds to distances ∼ 10−3 fm, the fine-structure constant has increased

from its low-energy (large-distance) value 1/137 to 1/128.

On the other hand, the assumption of an infinitely charged unobservable sea of

electrons seems unsatisfactory for various reasons. Because it relies on the Pauli

principle, it cannot be used for making sense of the negative-energy solutions of the

Klein-Gordon equation. However, charged scalar particles and antiparticles thereof

exist in nature. Also, it seems arbitrary to fill the Dirac sea with electrons rather

than positrons.

Indeed, in quantum field theory to be introduced below, antiparticles do not

require an interpretation as in Dirac’s hole theory. Despite its original heuristic

value, hole theory should therefore, according to J. Schwinger, be best regarded as

a historic curiosity and forgotten.

4.2 Charge conjugation

The existence of antiparticles with the same mass and spin but opposite charges that

obey the same equation corresponds to a new symmetry called charge conjugation

symmetry.

To each solution ψ of the Dirac equation for electrons (i /∂ − e /A−m)ψ = 0 one

can relate a solution ψc of the Dirac equation for positrons, (i /∂ + e /A−m)ψc = 0.

The relative sign between /∂ and /A is easily reversed by complex conjugation.

Consider therefore the Dirac adjoint spinor to ψ, but transposed, ψ̄T = γ0Tψ∗. This

obeys [
γµT (−i∂µ − eAµ)−m

]
ψ̄T = 0. (4.1)

This differs from a Dirac equation for positrons by a replacement of γµ ↔ −γµT .

Now −γµT is also a solution of the Clifford relation (2.12). Just as in the discussion

following (2.26), we can infer that in any representation of the γ algebra there must

exist a unitary matrix C satisfying

C(−γµT )C−1 = γµ. (4.2)

Up to an unobservable overall phase, we can therefore identify

ψc = Cψ̄T . (4.3)

One can show (exercise!) that C must be either symmetric or antisymmetric.

Which of the two possibilities holds depends on the number of space-time dimensions.
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In 4 dimensions, C is antisymmetric. In the Dirac representation, it reads

CDirac rep. = iγ2γ0 =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (4.4)

For example, in the Dirac representation a spin-down negative-energy spinor with

momentum ~k = −k~ex is mapped to a positive-energy one with spin up and momen-

tum +k~ex according to

ψ = eiEt−ikx


k

E+m

0

0

1

 → ψc = Cψ̄T = e−iEt+ikx


1

0

0
k

E+m

 .

Charge conjugation can be viewed as a symmetry of the Dirac equation itself by

combining the transformations15

ψ → ψc = Cψ̄T , Aµ → Acµ = −Aµ. (4.5)

In the chiral representation we have

Cchiral rep. =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 . (4.6)

Together with the off-diagonal γ0 from (2.15), a Weyl spinor
(
ϕ
0

)
is transformed to(

0
ϕc

)
with ϕc = −iσ2ϕ∗.

The antiparticles of Weyl particles with a definite chirality are therefore of op-

posite chirality. Because this is described by the other of the pair of Weyl equations

(2.42), C is not a symmetry if there are only particles with one chirality (and an-

tiparticles with the other). However, the combination of C and parity P ,

ψ → ψCP (t, ~x) = C (γ0)2︸ ︷︷ ︸
1

ψ∗(t,−~x), (4.7)

is a symmetry transformation, as one easily checks (exercise!).

15In order that also the Maxwell equations are invariant, we should have jc
µ = −jµ. But with

ψc = Cγ0Tψ∗ = −γ0Cψ∗ and ψ̄c = −ψTC† we have jc
µ = ψ̄cγµψ

c = −ψTC†γµCψ̄
T = +ψT γT

µ ψ̄
T ,

which is identical to ψ̄γµψ for ψσ(x) ∈ C. C invariance thus requires that the spinor ψ be treated
as an anticommuting object. This can be done formally through Grassmann numbers, which is
indeed usual practice in path integral formulations. In the quantum field theory to be introduced
below, ψ will be turned into an anticommuting operator, which resolves this problem.
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5 Quantum field theory

A genuine many-body quantum theory requires a vastly larger Hilbert space than the

one we have used up to now. Because in a relativistic theory we have to allow for the

possibility of particle creation and annihilation, there must be operators connecting

the various subspaces of given particle and antiparticle numbers. An operator corre-

sponding to the addition of a particle or antiparticle with certain quantum numbers

and at a certain point in space-time clearly depends on these quantum numbers and

a space-time coordinate. We therefore have to consider operator-valued fields. Rel-

ativistic covariance and irreducibility again require relativistic wave equations, but

now for operators instead of wave functions.16

5.1 Canonical quantization reviewed

Given a Lagrangian formulation, the transition from ordinary mechanics to quantum

mechanics is performed after identifying the canonical variables and momenta.

With an action

I =

∫ t2

t1

dt L(q(t), q̇(t)) (5.1)

the equations of motion follow from the requirement of stationarity of I under vari-

ations qi(t) → qi(t) + δqi(t) which leave the end-points fixed. This gives the Euler-

Lagrange equations
δI

δqi(t)
≡ ∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)
= 0. (5.2)

In the Hamiltonian formulation one introduces the conjugate momentum

pi =
∂L

∂q̇i
(q, q̇) (5.3)

Assuming that this can be inverted to express the velocities in terms of the coordi-

nates and the momenta, the Hamiltonian is given by a Legendre transformation

H(p, q) = piq̇
i(p, q)− L(q, q̇(p, q)). (5.4)

Canonical quantization replaces the functions pi(t) and qi(t) by operators in a

Hilbert space with (equal-time) commutation relations

[qi(t), pj(t)] = i~ δij. (5.5)

16This is sometimes called “second quantization”, but this term is rather misleading and is better
avoided. What really takes place is the introduction of a formalism that unifies the infinitely many
Hilbert spaces of one, two, three etc. particles that one would have to deal with separately otherwise.
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5.2 Quantization of a free scalar field

The transition to fields as dynamical variables that are to be quantized is best under-

stood as a generalization of the index i on qi(t) to one which collectively denotes all

discrete and continuous labels that characterize a field: ~x, µ, σ, . . .. The Kronecker

symbol δij then generalizes to products of ordinary Kronecker delta’s and Dirac delta

functions, since the latter is needed to pick a given “component” from the continu-

ously infinite sum that makes up an integration.

A complex scalar field ϕ(x) can thus be viewed as a coordinate with index i =

(~x,Re, Im). The Klein-Gordon equation (2 + m2)ϕ = 0 can be obtained as the

Euler-Lagrange equation of an action of the form

I =

∫
dt L =

∫
dt

∫
d3xL(ϕ, ∂ϕ) (5.6)

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ (5.7)

where instead of considering independent variations of Reϕ and Imϕ one may equi-

valently view ϕ and ϕ∗ as independent variables.

The conjugate momentum is now a field, too,

π(t, ~x) :=
∂L

∂[∂0ϕ(t, ~x)]
(5.8)

and the Hamiltonian is defined as

H =

∫
d3xH(π, ϕ) =

∫
d3x [π∂0ϕ+ π∗∂0ϕ

∗ − L(ϕ, ∂ϕ)] . (5.9)

With the specific Lagrangian (5.7) we have

π = ϕ̇∗, π∗ = ϕ̇, H =

∫
d3x

[
π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ

]
. (5.10)

Canonical quantization promotes the fields ϕ, ϕ∗, π, π∗ to operators ϕ, ϕ†, π, π†

with the nonvanishing equal-time commutators

[ϕ(t, ~x), π(t, ~y)] = [ϕ†(t, ~x), π†(t, ~y)] = iδ3(~x− ~y). (5.11)

The physical content becomes more evident by rewriting (5.10) in momentum

space:

H =

∫
d3k

(2π)3

[
|π̃(t,~k)|2 + ω2

k|ϕ̃(t,~k)|2
]
, ω2

k = ~k2 +m2. (5.12)

This is just a continuously infinite sum of independent harmonic oscillators, one for

each value of ~k.
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ϕ̃(t,~k) and π̃(t,~k) can therefore be written as linear combinations of creation and

annihilation operators for an harmonic oscillator with frequency ωk. In configuration

space we can therefore write for a given time t, say t = 0,

ϕ(0, ~x) =

∫
d3k

(2π)3

1

2ωk

[
a(k)ei

~k·~x + b†(k)e−i
~k·~x
]

ϕ†(0, ~x) =

∫
d3k

(2π)3

1

2ωk

[
b(k)ei

~k·~x + a†(k)e−i
~k·~x
]

(5.13)

π(0, ~x) =
−i
2

∫
d3k

(2π)3

[
b(k)ei

~k·~x − a†(k)e−i~k·~x
]

π†(0, ~x) =
−i
2

∫
d3k

(2π)3

[
a(k)ei

~k·~x − b†(k)e−i~k·~x
]

(5.14)

and (5.11) implies

[a(k), a†(k′)] = [b(k), b†(k′)] = (2π)32ωkδ
3(~k − ~k′) (5.15)

and vanishing commutators for the other combinations. (For a real field we would

have had to introduce only one pair a, a†.)

The normalization of the creation and annihilation operators is conveniently cho-

sen in such a way that the integration measure is manifestly Lorentz-invariant:∫
d3k

(2π)3

1

2ωk
=

∫
d4k

(2π)4
2πδ(k2 −m2)θ(k0) =:

∫
dk̃ (5.16)

The quantum theory of a simple harmonic oscillator now makes it clear that we

can define the vacuum (ground) state by

a(k)|0〉 = 0 = b(k)|0〉 ∀~k, 〈0|0〉 = 1. (5.17)

The Hamilton operator reads

H =
1

2

∫
dk̃ ωk

[
a†(k)a(k) + a(k)a†(k) + (a↔ b)

]
. (5.18)

This leads to the problem that 〈0|H|0〉 =∞ because of an accumulation of infinitely

many zero-point energies. Declaring that only differences of energy to the vacuum

be observable (this requires a neglect of gravity, though), we can simply replace

H → :H : = H − 〈0|H|0〉 =

∫
dk̃ ωk

[
a†(k)a(k) + (a↔ b)

]
, (5.19)

where : . . . : denotes the prescription of normal ordering which places all annihilation

operators to the right of all creation operators.
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The vacuum state is thus defined to have zero energy. The action of a creation

operator a†(k) or b†(k) produces a state which carries energy ωk and momentum ~k.

Many-particle states are obtained by repeated action of these operators. They obey

Bose statistics because [a†(k), a†(k′)] = 0. The resulting Hilbert space is called Fock

space. It is the union of all subspaces with a given number of quanta na and nb

(eigenspaces of the number operators Na =
∫
dk̃ a†(k)a(k) and Nb =

∫
dk̃ b†(k)b(k).)

In the free theory that we are considering now, it is trivial to solve for the time

evolution: In the Heisenberg picture we obtain a(k, t) = eiHta(k)e−iHt = e−iωkta(k),

etc., and therefore

ϕ(t, ~x) =

∫
dk̃
[
a(k)e−ik·x + b†(k)eik·x

]
. (5.20)

Because of the δ-function in dk̃, this solves automatically the Klein-Gordon equa-

tion and clearly contains all the positive and negative energy solutions. However, in

the quantum field theory they do not appear as negative-energy states. Instead, we

have found two species of quanta with the same spectrum, particles and antiparticles,

without the need for hole theory, which would anyway make no sense for bosons. (In

the case of a real (hermitian) field where b† → a† one would say that “the particle is

its own antiparticle”.)

5.2.1 Causality

At fixed time, field operators referring to different positions in space commute, that

is, they define independent observables. This is no longer true for different time

variables:

[ϕ(t, ~x), ϕ†(t′, ~x′)] =

∫
dk̃
[
e−ik·(x−x

′) − eik·(x−x′)
]

= i∆(x− x′). (5.21)

∆(z) is a homogeneous Green function for the Klein-Gordon equation because

of the δ-function contained in dk̃. It is manifestly invariant under proper Lorentz

transformations, so the fact that it vanishes for z0 = 0 and ~z 6= 0 by virtue of the

equal-time commutation relations implies that it vanishes for all z2 < 0. This is

explicitly seen from (5.21) because the second term cancels the first for x0 = x0′

upon ~k → −~k. On the other hand, for ~x = ~x′ but x0 6= x0′, this is no longer true.

The vanishing of (5.21) can also be understood immediately by noting that for

spacelike (and only for spacelike) z a proper Lorentz transformation permits to trans-

form z → −z, so that the two terms in (5.21) cancel each other. Since these terms

correspond to the propagation of particles and antiparticles respectively, causality is
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seen to be realized not by forbidding spacelike propagation at all, but by a destruc-

tive interference of the particles’ and the antiparticles’ amplitudes for propagation

over spacelike separations. Without antiparticles (negative energy solutions in the

wave equations) causality could never have been achieved!

5.2.2 Internal symmetry

The Lagrangian (5.7) is invariant under global U(1) transformations

ϕ→ ϕ′ = eiαϕ, ϕ† → ϕ†′ = e−iαϕ†. (5.22)

This could be turned into a local gauge transformation by minimal electromagnetic

coupling.

Global invariance transformations are generated by

Q =

∫
d3x π(t, ~x)

δϕ′(t, ~x)

δα

∣∣∣
α=0

(5.23)

through commutators:

[iQδα, ϕ] =
δϕ′(t, ~x)

δα

∣∣∣
α=0

δα. (5.24)

This automatically gives a conserved (Noether) charge from the invariance of the

Hamiltonian: Q̇ = i[H,Q] = 0.

In our case, δϕ′(t,~x)
δα

∣∣∣
α=0

= iϕ, δϕ†′(t,~x)
δα

∣∣∣
α=0

= −iϕ†, so

Q = i

∫
d3x

[
ϕ†ϕ̇− ϕ̇†ϕ

]
. (5.25)

Again, we should go over to the normal ordered operator :Q : in order to assign a

vanishing expectation value to the vacuum. Then

:Q : =

∫
dk̃
[
a†a− b†b

]
= Na −Nb (5.26)

which shows that a-quanta carry charge +1, and b-quanta charge −1. This fits to

their interpretation as particles and antiparticles. Which is which is pure convention,

so the arbitrariness that was present in Dirac’s hole theory, where one species was

singled out for occupying the negative energy states does not occur any longer.

5.2.3 Time-ordered product and Feynman propagator

The field operator ϕ is built from annhihilation operators a and creation operators

b†. It therefore carries charge −1. Conversely, ϕ† carries charge +1. The amplitude
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for a positive charge transport from a space-time point x′ to x is described by the

expectation value of the charge-neutral products ϕ†(x)ϕ(x′) or ϕ(x′)ϕ†(x), depending

on whether the time x0′ or x0 is the earlier one. It is therefore natural to define the

time-ordered product

Tϕ(x′)ϕ†(x) := θ(t′ − t)ϕ(x′)ϕ†(x) + θ(t− t′)ϕ†(x)ϕ(x′). (5.27)

Using that ϕ(x′) is a homogeneous solution of the Klein-Gordon equation and

the equal-time commutation relations one can readily show that the time-ordered

product satisfies the operator equation(
2x′ +m2

)
Tϕ(x′)ϕ†(x) = −iδ4(x′ − x). (5.28)

(Note that the time derivatives contained in 2 prevent it from commuting with T.)

It follows that its vacuum expectation value is one of the inhomogeneous Green

functions of the Klein-Gordon wave operator.

Using that 〈0|ϕ(x′)ϕ†(x)|0〉 =
∫
dk̃e−ik(x

′−x), 〈0|ϕ†(x)ϕ(x′)|0〉 =
∫
dk̃e+ik(x

′−x)

and

θ(t′ − t) =

∫
dω

2πi

eiω(t′−t)

ω − iε
one finds that

i〈0|Tϕ(x′)ϕ†(x)|0〉 = GF (x′ − x) = −
∫

d4k

(2π)4

1

k2 −m2 + iε
e−ik·(x

′−x). (5.29)

GF is called Feynman or causal propagator. It will play a central role in the devel-

opment of perturbation theory later on, for which we record the following important

relation (exercise!)

Tϕ(x′)ϕ†(x) = 〈0|Tϕ(x′)ϕ†(x)|0〉+ :ϕ(x′)ϕ†(x) : (5.30)

The explicit form (5.29) shows that GF is a manifestly Lorentz-covariant quantity.

In Fock space, it has the interpretation of the amplitude for propagation of a particle

from x′ to x if t > t′ and of an antiparticle from x to x′ if t′ > t. Note that for spacelike

momenta it depends on the choice of frame of reference which event is at a later time.

For timelike and lightlike separation however there is no ambiguity when we restrict

ourselves to proper Lorentz transformations.

The iε-prescription in (5.29) is often referred to as Feynman boundary condition.

In terms of the positive and negative energy plane waves it amounts to requiring that

only positive frequencies propagate forward in time, which by symmetry implies that

negative frequencies must propagate backward in time.
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5.3 Quantization of the free Dirac field

The free Dirac equation (2.10) as well as its adjoint verion (2.19) can be obtained as

(Euler-Lagrange) field equations of the Lagrangian density

L = ψ̄(i /∂ −m)ψ (5.31)

by independent functional variation of ψ(x) and ψ†(x), which is equivalent to varying

the real and imaginary part of ψ(x). Because γ0 is invertible, one may equally well

consider independent variations of ψ and ψ̄.

However, the canonical quantization procedure is hampered by the fact that the

canonical momenta are algebraically determined by the coordinates,

πψ(x) =
∂L

∂∂0ψ(x)
= iψ̄γ0 = iψ† (5.32)

i.e. without involving time derivatives of the latter as usual. So on the one hand we

expect [ψ, ψ†] = 0 for the independent coordinates, and on the other hand we should

have [ψ, πψ] = i[ψ, ψ†] = i1. Because of the “constraint” (5.32), one has to modify

the canonical formalism. However, we shall not embark on the general formalism of

quantization with constraints which has been developed by Dirac, but shall proceed

heuristically.

Consider the expansion of the Dirac field in plane-wave solutions (3.7), (3.8):

ψα(x) =

∫
d3k

(2π)3

m

ωk︸ ︷︷ ︸
d̃k

∑
a=1,2

{
ba(k)u

(a)
α (k)e−ik·x + d†a(k)v

(a)
α (k)eik·x

}
, (5.33)

ψ̄α(x) =

∫
d̃k
∑
a=1,2

{
b†a(k)ū

(a)
α (k)eik·x + da(k)v̄

(a)
α (k)e−ik·x

}
, k0 = ωk,(5.34)

where we have chosen a slightly different normalization of the Lorentz invariant

integration measure than in the case of scalar fields (cp. to (5.16)).

In analogy to the scalar case we may expect that the expansion coefficients b(k),

d(k), and their conjugates become annihilation and creation operators of particles

(b) and antiparticles (d). Imposing commutation relations like [b, b†] ∝ 1 would lead

to the Bose-Einstein statistics in conflict with Pauli’s exclusion principle. The latter

can be realized by adopting anticommutation relations instead,

{ba(k), b†b(k
′)} = (2π)3k

0

m
δ3(~k − ~k′)δab (5.35)

{da(k), d†b(k
′)} = (2π)3k

0

m
δ3(~k − ~k′)δab (5.36)
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and zero anticommutators for all other combinations. This is equivalent to the equal-

time anticommutation relation for field operators

{ψα(t, ~x), ψ†β(t, ~y)} = δ3(~x− ~y)δαβ. (5.37)

The use of anticommutators in place of commutators achieves the desired anti-

symmetrization of multi-particle states a†(1) · · · a†(n)|0〉 in 1 . . . n, where the integer

labels represent particular choices of b or d-type, spin index, and momentum variable.

The free time evolution is effected by the operator (exercise!)

H =

∫
d̃k ωk

∑
a=1,2

[
b†a(k)ba(k) + d†a(k)da(k)

]
(5.38)

which is positive definite, and thus a suitable Hamilton operator.

Had we used commutation relations in (5.35) instead, the Hamilton operator

would have turned out to be unbounded from below. Conversely, had we used anti-

commutators in the quantization rules for the scalar fields, we would have found a

violation of causality. This is in essence the spin-statistics theorem proved by Pauli –

a consistent quantization of relativistic fields depends on Bose-Einstein statistics for

integer-spin fields and Pauli-Dirac statistics for half-integer spin. Hence, the Pauli

exclusion principle, which in nonrelativistic quantum mechanics cannot be deduced

but is so important to the structure of atoms and the stability of ordinary matter, can

be understood as a manifestation of the principles of relativistic quantum mechanics!

Using the anticommutation relations (5.35) one finds that for unequal times

{ψα(x), ψ†β(x
′)} = (i /∂x +m)αβ i∆(x− x′) (5.39)

with ∆ as given by (5.21). Causality is now realized by vanishing anticommutators

for spacelike separation. Observables such as the Dirac current are bilinear in the

Dirac field operators and commute outside the light-cone.

The time-ordered product of Dirac field operators is defined with an extra minus

sign according to

Tψ(x′)ψ̄(x) := θ(t′ − t)ψ(x′)ψ̄(x)− θ(t− t′)ψ̄(x)ψ(x′). (5.40)

Its vacuum expectation value again gives a Green function, now for the Dirac wave

operator. This is the Feynman propagator for fermions

〈0|Tψα(x)ψ̄β(y)|0〉 =: iSF (x− y)αβ

SF (x− y) =

∫
d4k

(2π)4
e−ik·(x−y)

/k +m

k2 −m2 + iε
. (5.41)
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5.4 Quantization of the free electromagnetic field

The source-free Maxwell’s equations can be obtained from the Lagrangian density

L(A, ∂A) = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ. (5.42)

The canonical momenta associated to the 4-vector potential Aµ are found to be

the electric field strength components

πµ =
∂L

∂(∂0Aµ)
= −F 0µ. (5.43)

This is fine except for π0 = F 00 ≡ 0, so A0 does not have a conjugate momentum,

and the usual canonical quantization rules fail.

The reason for this trouble is gauge invariance. The photon field does not have

4 times as many degrees of freedom as a neutral scalar field, but only twice as many

(corresponding to the two polarizations of a plane wave).

This suggests to eliminate the unphysical degrees of freedom by putting also

A0 = 0. In the Lagrangian, A0 acts not so much as a dynamical field, but as a

Lagrange multiplier field for the Gauss law constraint ∇ · ~E = ∇ · ~π = 0. Since

for A0 = 0 we have ~E = −∂t ~A, this can be implemented through div ~A = 0. Then

everything unphysical is eliminated, however at the price of a loss of manifest Lorentz

covariance and locality.

A Lorentz-covariant alternative is to introduce “gauge-breaking terms” into L and

to work temporarily with a larger Fock space than the physical one. The modern

way of doing this has been introduced by Faddeev and Popov; in the case of electro-

magnetism we can however follow the equivalent but simpler method of Gupta and

Bleuler.

By adding the gauge-breaking term

L → L− λ

2
(∂ · A)2 (5.44)

we change the theory such that there are nontrivial conjugate momenta for all four

components of Aµ:

πµ = F µ0 − λgµ0(∂ · A). (5.45)

This allows us to introduce the standard equal-time commutation relations

[Aµ(t, ~x), π
ν(t, ~y)] = iδνµδ

3(~x− ~y). (5.46)

From (5.44) follow the (operator) field equations

2Aµ − (1− λ)∂µ∂ · A = 0 (5.47)
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which are simplest for λ = 1 (“Feynman gauge”). With this latter choice, the four

components of Aµ are very much like four real massless Klein-Gordon field operators.

The field equations are automatically satisfied by an expansion in plane waves with

k0 = ωk = |~k|,

Aµ(x) =

∫
dk̃

3∑
λ=0

{
a(λ)(k)ε(λ)

µ (k)e−ik·x + a(λ)†(k)ε(λ)
µ (k)eik·x

}
(5.48)

where for any given momentum k on the forward light-cone the ε
(λ)
µ (k) are a set of

linearly independent vectors.

As a special choice we may pick the polarization vectors ε
(λ)
µ (k) such that in a

Lorentz frame where kµ = (k, 0, 0, k)

ε(0)
µ =


1

0

0

0

 , ε(1)
µ =


0

1

0

0

 , ε(2)
µ =


0

0

1

0

 , ε(3)
µ =


0

0

0

1

 . (5.49)

ε(1) and ε(2) are then transverse polarizations, ε(3) is longitudinal with respect to k,

and ε(0) will be referred to as scalar polarization. For arbitrary k they satisfy

∑
λ

ε
(λ)
µ (k)ε

(λ)
ν (k)

ε(λ)(k) · ε(λ)(k)
= gµν , ε(λ)(k) · ε(λ′)(k) = gλλ

′
. (5.50)

In the Feynman gauge, πµ = −∂0Aµ+ spatial derivatives, so that (5.46) implies

[Ȧµ(t, ~x), Aν(t, ~y)] = igµνδ
3(~x− ~y) (5.51)

while all the commutators of A and Ȧ among themselves vanish. The equal-time

commutation rules therefore translate into

[a(λ)(k), a(λ′)†(k′)] = −gλλ′2|~k|(2π)3δ3(~k − ~k′) (5.52)

which is what one would expect for massless Klein-Gordon fields except for a reversed

sign on the right-hand side for the scalar polarization λ = 0.

Checking causality, we find [Aµ(x), Aν(y)] = −igµν∆(x − y) which vanishes for

spacelike distances, as before.

However, the construction of the usual Fock space through

a(λ)(k)|0〉 = 0, 〈0|0〉 = 1 (5.53)
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encounters a severe difficulty:

Because of the wrong sign of [a(0), a(0)†], states generated by a(0)†(k) can have

negative norm! Consider |1〉 =
∫
dk̃ f(k)a(0)†(k)|0〉. Its norm is

〈1|1〉 =

∫ ∫
dk̃ dk̃′ f ∗(k)f(k′)〈0|a(0)(k)a(0)†(k′)|0〉 = −〈0|0〉

∫
dk̃ |f(k)|2. (5.54)

However, we cannot simply interchange the roles of a(0) and a(0)† as this would spoil

Lorentz covariance.

But we anyway need to get rid of the unphysical polarizations that were made

dynamical only through the introduction of a gauge-breaking term in (5.44).

The (Lorentz) gauge choice ∂ · A = 0 would eliminate the gauge-breaking term,

but it cannot be imposed on the level of operators, for it would be inconsistent with

the commutation relations (5.51).

We may however require that the Lorentz gauge holds in the mean

〈ψ|∂ · A|ψ〉 = 0 (5.55)

for physical states. But this is not a linear relation. A linear condition to define a

physical Hilbert space as a subspace of the unphysical Fock space based on (5.53)

which implies (5.55) is

∂ · A(+)|ψ〉 = 0 ⇐⇒ |ψ〉 ∈ H1 (5.56)

where the subscript (+) means that only the annihilation operator part (i.e. the

positive frequency part) of A is to be taken:

∂ · A(+) = −i
∫

dk̃ e−ik·x
∑
λ=0,3

a(λ)(k)ε(λ)(k) · k. (5.57)

We may consider basis states |ψ〉 ∈ H1 that are factored as |ψ〉 = |ψT 〉|φ〉, where

|ψT 〉 is generated by transverse creation operators and |φ〉 by scalar and longitudinal

ones. The condition (5.56) means that[
a(0)(k)− a(3)(k)

]
|φ〉 = 0. (5.58)

This implies that there are no longer any negative-norm states, however there

exist still states with zero norm: If a state |φn〉 has n scalar or longitudinal excitations

and satisfies (5.58), then it is eigenstate to the number operator

N ′ =

∫
dk̃
[
a(3)†(k)a(3)(k)− a(0)†(k)a(0)(k)

]
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which counts the sum of scalar and longitudinal quanta (notice the sign!) then one

easily shows that 0 = 〈φn|N ′|φn〉 = n〈φn|φn〉. Only |φ0〉, the vacuum state with

respect to scalar and longitudinal quanta, is a positive-norm state; all other |φn〉
have zero norm.

However, in expectation values of physical observables, the factors |φ〉 in |ψ〉 drop

out. For example,

:H : =

∫
dk̃ ωk

[
3∑

λ=1

a(λ)†(k)a(λ)(k)− a(0)†(k)a(0)(k)

]
(5.59)

and

〈ψ|H|ψ〉
〈ψ|ψ〉

=
〈ψT |

∫
dk̃ ωk

∑
λ=1,2 a

(λ)†(k)a(λ)(k)|ψT 〉
〈ψT |ψT 〉

× 〈φ|φ〉
〈φ|φ〉

+
〈ψT |ψT 〉
〈ψT |ψT 〉

×

0︷ ︸︸ ︷
〈φ|
∫

dk̃ ωk[a
(3)†(k)a(3)(k)− a(0)†(k)a(0)(k)]|φ〉

〈φ|φ〉
(5.60)

This means that only equivalence classes of |ψ〉 have a physical interpretation,

and we may choose as a representative those states where |φ〉 = |φ0〉.17

However, although only the states corresponding to transverse photons are given

physical meaning, in intermediate steps the full indefinite-norm Fock space is re-

quired, e.g. when inserting unity as a sum over all states. The projection to trans-

verse polarizations is possible only in the very end, for example for the external

vectors of matrix elements.

5.5 Casimir effect

An important consequence of the quantization of fields is the existence of vacuum

fluctuations. As noted by Casimir in 1948, these vacuum fluctuations have rather

directly observable consequences. If macroscopic conducting bodies are present, they

will introduce boundary conditions for electromagnetic fields: a perfect conductor

forces the magnetic field perpendicular and the electric field parallel to its surface

to vanish. As a consequence, the vacuum fluctuations will be different for different

arrangements of conductors and so will the zero-point energies. While unmeasurable

as such, differences in zero-point energies are measurable.

17Mathematically, the physical Hilbert space is the quotient of H1 with respect to the space of
zero-norm states: Hphys = H1/H0.
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Let us consider the simplest case of two perfectly conducting parallel plates sep-

arated by a distance a in the z-direction, located at z = 0 and z = a. Let the extent

of these plates in x- and y-directions be L� a.

In the previous section we have seen that only transverse modes ( ~E ⊥ ~B ⊥ ~k)

contribute to the energy. Modes where ~k points in the z-direction have to have

vanishing amplitude at z = 0, a. This constrains kz to discrete values kz = nπ/a. The

components kx and ky remain continuous and there are two transverse polarizations

unless kz vanishes – for kz = 0 only the mode where ~B is parallel to the plates and
~E orthogonal is allowed.

Consider now the zero-point energy contribution E =
∑

1
2
~ω = 1

2
~c
∑
|~k| from

the allowed modes in the volume L2a between the plates. With |~k| =
√
~k2
‖ + (nπ/a)2,

~k2
‖ = k2

x + k2
y,

E =
~c
2

∫
L2d2k‖
(2π)2

{
|~k‖|+ 2

∞∑
n=1

√
~k2
‖ + (nπ/a)2

}
(5.61)

while without boundary conditions from conducting plates we would have had

E0 =
~c
2

∫
L2d2k‖
(2π)2

∫
a dkz
2π

2
√
~k2
‖ + k2

z =
~c
2

∫
L2d2k‖
(2π)2

∫ ∞
0

dn 2
√
~k2
‖ + (nπ/a)2

(5.62)

where in the last expression we made the substitution kz = nπ/a with a continuous

variable n.

Both, (5.61) and (5.62) are divergent because the integrand grows at large |~k|
(“ultraviolet” divergence), and even their difference turns out to be ill-defined. How-

ever, when considering the difference E − E0, we may assume that the boundary

conditions of a perfect conductor apply only as long as the wavelength is larger than

a typical atomic size R. Let us therefore regulate the integrands by multiplication

with a cutoff function f(|~k|) which is identically 1 as long as |~k| � 1/R and identi-

cally 0 for |~k| � 1/R, and smoothly interpolating in between. Then

E − E0

L2
=

~c
2π

∫ ∞
0

k‖ dk‖

{
k‖
2
f(k‖) +

[ ∞∑
n=1

−
∫ ∞

0

dn
]√

k2
‖ + (nπ/a)2f(

√
. . .)

}
(5.63)

Because of absolute convergence thanks to the cutoff function f , we can inter-

change sum and integration and rewrite (5.63) as

E − E0

L2
= ~c

π2

4a3

{
1
2
F (0) + F (1) + F (2) + . . .−

∫ ∞
0

dnF (n)

}
(5.64)
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with

F (n) :=

∫ ∞
0

du
√
u+ n2f(π

a

√
u+ n2) =

∫ ∞
n2

du′
√
u′f(π

a

√
u′) (5.65)

where u = a2k2
‖/π

2.

This can be evaluated through the Euler-MacLaurin formula (A.11) as

E − E0

L2
= ~c

π2

4a3

{
− 1

2!
B2F

′(0)− 1

4!
B4F

′′′(0) + . . .

}
(5.66)

where the Bernoulli numbers are given in (A.2). We have F ′(n) = −2n2f(π
a
n).

Assuming that f(0) = 1, f ′(0) = f ′′(0) = . . . = 0, we obtain F ′(0) = 0, F ′′(0) = 0,

F ′′′(0) = −4, and all higher derivatives zero. We thus find

E :=
E − E0

L2
=

~cπ2B4

4!a3
= − π2~c

720a3
. (5.67)

The force per unit area is

F = −∂E
∂a

= − π2~c
240a4

= − 0.013

(a[µm])4
dyn/cm2︸ ︷︷ ︸

0.1Pa

(5.68)

and turns out to be attractive. It can be measured in practice only when a <∼ µm. Its

magnitude and dependence on a (which distinguishes it from other effects like residual

electrostatic forces and the van der Waals force) has been confirmed experimentally

in 1958 by Sparnaay, albeit with large (∼ 100%) systematic errors. Higher precision

tests have been performed only recently by Lamoreaux in 1997 (∼ 5% accuracy)

and by Mohideen & Roy in 1998 (∼ 1%), in perfect agreement with the theoretical

prediction (which at this accuracy requires the inclusion of corrections due to surface

roughness, finite conductivity, and temperature).
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6 Perturbation theory

6.1 Interaction picture

In quantum mechanics, time evolution is usually studied in one of two “pictures”.

In the Schrödinger picture, the states are considered as time dependent and evolve

according to

|ψ(t)〉S = exp{−iH(t− t0︸ ︷︷ ︸
=:t̄

)}|ψ(t0)〉, (6.1)

the infinitesimal version of which is the Schrödinger equation. In the Heisenberg pic-

ture, which we have used above in the canonical quantization of fields, the states are

left untouched and the evolution is entirely in the observables, OH(t) = eiHt̄OSe−iHt̄,
OH(t0) ≡ OS. This is completely equivalent as

S〈χ(t)|OS|ψ(t)〉S ≡ 〈χ(t0)|OH(t)|ψ(t0)〉. (6.2)

At t0, the two pictures coincide, which is why we can omit any labels there.

In perturbation theory it turns out to be extremely useful to separate off the

known time evolution of the free theory such that all operators evolve like free Heisen-

berg operators. Let H ≡ HH ≡ HS be the full, interacting Hamilton operator and

H = H0S+H1S a separation into free and interaction part in the Schrödinger picture.

Operators and states in the interaction picture (subscript I) are then defined as

OI(t) ≡ eiH0S t̄OSe−iH0S t̄ ≡ U(t)OH(t)U−1(t), U(t) = eiH0S t̄e−iHt̄ (6.3)

|ψ(t)〉I ≡ eiH0S t̄|ψ(t)〉S ≡ U(t)|ψ(t0)〉 . (6.4)

Interaction-picture operators satisfy free Heisenberg equations

dOI(t)
dt

= eiH0S t̄iH0S OSe−iH0S t̄ − eiH0S t̄OS iH0Se
−iH0S t̄ = i[H0S,OI(t)], (6.5)

the states a Schrödinger-like equation

i
d

dt
|t〉I = i

d

dt

[
eiH0S t̄|t〉S

]
=

−H0S|t〉I + eiH0S t̄(H0S +H1S)e
−iH0S t̄ eiH0S t̄|t〉S︸ ︷︷ ︸

|t〉I

= H1I(t)|t〉I (6.6)

which is governed by the interaction part of the Hamilton operator in the interaction

picture.18

18Notice that H ≡ HS ≡ HH 6≡ HI , H0S ≡ H0I 6≡ H0H , H1S 6≡ H1H 6≡ H1I .
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Defining U(t, t′) ≡ U(t)U−1(t′), the general time evolution between two times in

the interaction picture is

|t〉I = U(t, t′)|t′〉I (6.7)

and U(t, t′) satisfies i d
dt
U(t, t′) = H1I(t)U(t, t′) with initial condition U(t′, t′) = 1,

which can be cast into the integral equation

U(t, t′) = 1− i
∫ t

t′
dt′′H1I(t

′′)U(t′′, t′). (6.8)

The operator U(t) which intertwines the Heisenberg and the interaction picture is

given as the special case U(t) ≡ U(t, t0).

The interaction Hamiltonian consists of terms proportional to (generally powers

of) coupling constants. If these are small in some sense, one can attempt to solve

the integral equation (6.8) iteratively. This leads to

U(t, t0) = 1 + (−i)
∫ t

t0

dt1H1I(t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2H1I(t1)H1I(t2)

+(−i)3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3H1I(t1)H1I(t2)H1I(t3) + . . . (6.9)

All the operators on the right turn out to be time ordered. We can therefore

simplify by using the time-ordering symbol T, letting all integrations run from t0 to

t and correcting for the overcounting according to∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH1I(t1)H1I(t2) · · ·H1I(tn)

=
1

n!

∫ t

t0

dt1 · · · dtn TH1I(t1)H1I(t2) · · ·H1I(tn) =:
1

n!
T

(∫ t

t0

dt′H1I(t
′)

)n
(6.10)

since there are n! possibilities of ordering ti1 ≥ ti2 ≥ . . . ≥ tin .

Formally we write (6.9) with (6.10) as

U(t, t0) = T exp

{
−i
∫ t

t0

dt′H1I(t
′)

}
(6.11)

where time ordering of the exponential is defined through its Taylor series with each

term time-ordered.

6.2 S-matrix

An interacting field theory may in principle be wildly different from the correspond-

ing free theory. An important example is quantum chromodynamics, where the

elementary quanta of quarks and gluons do not appear as observable particles.

49



QED – Version November 3, 2003 6.2 S-matrix

In quantum electrodynamics, we know that individual photons and electrons can

be observed and that their interactions are characterized by a small parameter, the

fine-structure constant. It is therefore natural to consider states which correspond

to well separated particles at some early time, “in-states”, and whose wavefunctions

overlap and interact only for some finite span of time. The results of the interac-

tion can be measured by considering the overlap with states that correspond to a

particular configuration of well separated states at late times, “out-states”.

This is the content of the S-matrix, which in the Heisenberg picture is defined by

Sβα = H〈β out|α in〉H . (6.12)

Note that in the Heisenberg picture, the entire history of an in-state is determined

by a time-independent Hilbert-space vector and that only the operators evolve in

time. A given state |α in〉 therefore corresponds, by construction, to well-separated

wave packets for t → −∞, and to something arbitrarily complicated at later times;

for out-states this situation is reversed.

In situations which can be treated by perturbation theory, one can assume that

all interactions are switched off “adiabatically” before some very large time −T . For

times earlier than this, there is no difference between Heisenberg and interaction

picture, if t0 < −T . Let us take t0 = −∞. Then

|α(−∞) in〉I = |α in〉H (6.13)

|ψ(t)〉I = U(t,−∞)|ψ〉H (6.14)

ϕH(t) = U−1(t,−∞)ϕI(t)U(t,−∞) (6.15)

The field operators in the interaction picture follow a free time evolution; all the

nontrivial time evolution is in the states.

If we choose the basis of out-states such that

|α out(+∞)〉I = |α in(−∞)〉I ≡ |α〉, 〈β|α〉 = δαβ (6.16)

then we can express (6.12) as

Sβα = I〈β out(−∞)|α in(−∞)〉I = I〈β out(+∞)|U(+∞,−∞)|α in(−∞)〉I
= 〈β|U(+∞,−∞)|α〉 ≡ 〈β|S|α〉. (6.17)

S is the scattering operator, which in the absence of interactions reduces to

the unit operator. Occasionally the S-matrix elements are written as 〈β|S|α〉 =
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δαβ + i〈β|T |α〉, where forward-scattering is separated off and the latter terms form

the so-called transition matrix.

When there are no derivatives in the interaction Hamiltonian as is the case in

quantum electrodynamics,19 we have H1I = −L1I =: −LI and we can write

S ≡ U(+∞,−∞) = T exp

{
i

∫
d4xLI

}
. (6.18)

6.3 LSZ reduction technique

In the interaction picture, the evaluation of S-matrix elements (6.17) involves the cal-

culation of commutators of the annihilation and creation operators which produce

the initial and final states out of the in-vacuum with the operator (6.18). A system-

atic procedure for doing this can be based on the reduction formulae developed by

Lehmann, Symanzik, and Zimmermann (1950).

For simplicity we shall derive them for neutral scalar fields (b(†) ≡ a(†)), where the

quantum numbers α of an initial state be given simply by a set of initial momenta

~p1, ~p2, . . . , ~pn, and β = {~q1, . . . , ~qm}. Pulling out one momentum ~p ≡ ~p1 from the set

α and writing α = {~p, α′} we have

Sβα = 〈β|S|α〉 = 〈β|Sa†(p)|α′〉
= 〈β|a†(p)S|α′〉+ 〈β|Sa†(p)− a†(p)S|α′〉. (6.19)

If ~p 6∈ β, the first term vanishes; otherwise we fall back to the task of computing

Sβ′α′ with β′ = β\~p. Such contributions are called disconnected and we shall simply

assume that β and α are disjoint.

Since S is a functional of the fields ϕI , let us express a† in terms of ϕI as well.

Since ϕI obeys free-field evolution equations and thus an equation like (5.20), we

may write for arbitrary t

a†(p) =

∫
d3xe−ip·x

1

i
(∂
→

0 − ∂
←

0)︸ ︷︷ ︸
∂
↔

0

ϕI(x) (6.20)

S is a time-ordered operator. In order that Sa†(p) and a†(p)S in (6.19) be time-

ordered, too, choose t = −T ′ and t = +T ′ for these two terms with T ′ > T and

19When there are derivative couplings, a similar formula holds where T has to be replaced by
a “covariantized” time ordering prescription T̂ defined by T̂∂µ · · · ∂µ′ := ∂µ · · · ∂µ′T (Matthew’s
theorem).
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interactions switched off adiabatically outside the interval (−T, T ). Then we can

write

〈β|Sa†(p)− a†(p)S|α′〉 =
[∫

t=−T ′
d3x−

∫
t=T ′

d3x︸ ︷︷ ︸
−

∫ T ′
−T ′ d4x

∂
∂x0

]
e−ip·x

1

i
∂
↔

0〈β|TϕI(x)S|α′〉

= i

∫ T ′

−T ′
d4x
(
e−ip·x∂2

0 − [ ∂2
0e
−ip·x︸ ︷︷ ︸

(4−m2)e−ip·x

]
)
〈β|TϕI(x)S|α′〉

= i

∫ T ′

−T ′
d4x e−ip·x(2x +m2) 〈β|TϕI(x)S|α′〉 (6.21)

Repeating this for all annihilation and creation operators needed to relate 〈β|
and |α〉 to the vacuum, choosing larger T ′′ > T ′, T ′′′ > T ′′, etc., and sending all

T (n) →∞ in the end, one obtains (up to disconnected terms, or by demanding that

qi 6= pj for all i, j)

〈q1 · · · qm|S|p1 · · · pn〉 = im+n

∫
d4y1 · · · d4xn e

iq1·y1 · · · e−ipn·xn(2y1 +m2) · · ·

· · · (2xn +m2)〈0|TϕI(y1) · · ·ϕI(xn)ei
∫
d4xLI |0〉 (6.22)

An analogous formula can be derived for other fields than scalar ones. For in-

stance, for fermions we have

b†(k, s) =

∫
d3xψ̄I(x)γ

0e−ik·xu(k, s). (6.23)

Proceeding as above, one partial integration of ∂0 leads to the Dirac operator acting

on the interaction-picture fields in place of the Klein-Gordon wave operator.

6.4 Wick’s theorem and Feynman rules

The usefulness of (6.22) is rooted in Wick’s theorem, which can be proved by induc-

tion starting from the relation between time- and normal-ordered products of two

free field operators

Tϕ1ϕ2 = :ϕ1ϕ2 : + 〈0|Tϕ1ϕ2|0〉︸ ︷︷ ︸
−iGF (x1−x2)

(6.24)

where ϕi := ϕ(xi).

52



QED – Version November 3, 2003 6.4 Wick’s theorem and Feynman rules

It reads

Tϕ1 · · ·ϕn = :ϕ1 · · ·ϕn :

+
∑
k<l

:ϕ1 · · · ϕ̂k · · · ϕ̂l · · ·ϕn : 〈0|Tϕkϕl|0〉+ . . .

+
∑

k1<k2<···<k2p

:ϕ1 · · · ϕ̂k1 · · · ϕ̂k2p · · ·ϕn :

×
∑
P

〈0|TϕkP1
ϕkP2
|0〉 · · · 〈0|TϕkP2p−1

ϕkP2p
|0〉+ . . . (6.25)

where a caret over an operator indicates its omission and the last sum is over all

permutations P . Stated in words, Wick’s theorem expresses a time-ordered product

as the sum of all possible normal products where pairs of field operators have been

omitted and replaced by Feynman Green’s functions. This substitution is often called

“contraction”.

(6.25) is easily generalized to time-ordered products of the form

Tϕ1 · · ·ϕn :ϕn+1 · · ·ϕm : :ϕm+1 · · ·ϕp : · · ·

The only difference turns out to be that contractions within one group of normal-

ordered operators do not occur.

In order to evaluate (6.22) in perturbation theory, one first expands S up to some

power in the coupling constants. This reduces the problem to the evaluation of the

vacuum expectation values of products of free (interaction-picture) fields. Wick’s

theorem then provides the building blocks as

〈0|Tϕ1 · · ·ϕ2p−1|0〉 = 0, (6.26)

〈0|Tϕ1 · · ·ϕ2p|0〉 =
∑
P

〈0|TϕkP1
ϕkP2
|0〉 · · · 〈0|TϕkP2p−1

ϕkP2p
|0〉. (6.27)

In quantum electrodynamics, the relevant fields operators are ψ and Aµ. Their

contractions are the Feynman propagators (5.41) and (in Feynman gauge)

〈0|TAµ(x)Aν(y)|0〉 = −gµν(−i)GF (x− y). (6.28)

and the S-operator is built from

LI(x) = −e : ψ̄(x)γµAµ(x)ψ(x) : (6.29)

The latter provides “vertices” to which Feynman propagators connect. Representing

the latter by lines, this gives a graphical representation in “Feynman diagrams”.
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The entire procedure can be cast into a few rules, “Feynman rules”, which are

conveniently given in momentum space. Basically, they consist of drawing all pos-

sible topologically distinct diagrams contributing to the process under consideration

which contain at most as many vertices as the maximal power of the electric coupling

e one wants to keep. In QED, a vertex connects a photon line with an incoming and

an outgoing fermion line, and represents a factor −ieγµ. At each vertex there is

momentum conservation. Fermion lines correspond to the momentum-space propa-

gator i( /p + m)/(p2 − m2 + iε) ≡ i/( /p − m + iε), photon lines to −igµν/(p2 + iε).

Momenta running through closed loops are to be integrated over with
∫
d4k/(2π)4.

Closed fermion loops are assigned an additional factor of (−1).

Diagrams without external lines (vacuum diagrams) can be drawn to each di-

agram with external lines. They factorize, i.e., they contribute an overall factor

〈0|S|0〉, which by energy conservation is but an unobservable phase, |〈0|S|0〉|2 = 1,

so vacuum diagrams can be left out from the start.

As an example consider the propagation of an electron in an external potential

Aextµ (x). This can be included into the S-operator by replacing the interaction-picture

operator Aµ(x)→ Aµ(x) + Aextµ (x)1, where Aextµ (x) is a classical 4-vector potential.

Neglecting forward scattering, the lowest order contribution is given by

−ie〈0|Tψ̄1ψ2

∫
x

: ψ̄x( /A+ /Aext)xψx : |0〉. (6.30)

Since the operator A cannot be paired up with another one, it drops from this

expression.

At order e2 there is a correction term which only contributes to forward scattering,

and one involving (Aext)2. For sufficiently weak external fields this is a negligible

contribution.

The first important correction to Coulomb scattering thus comes from

(−ie)3〈0|Tψ̄1ψ2

∫
x

: ψ̄x /Axψx :

∫
y

: ψ̄y /Ayψy :

∫
z

: ψ̄z /A
ext
z ψz : |0〉 (6.31)

Representing fermion and photon propagators by straight and wiggly lines, resp.,

this gives rise to the following Feynman diagrams

A
� ext/

�
+� A

� ext/
�

+� A
� ext/

�
+� A

� ext/
�

(6.32)

The corresponding S-matrix element is obtained after truncation (“amputation”)

of the external (fermion) lines.
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7 One-loop corrections

7.1 Electron self-energy

The diagrams in (6.32) where a photon is emitted and absorbed by the same electron

line contain a “loop” built from one electron propagator and one photon propagator.

The latter is called the one-loop electron self-energy. In momentum space it is given

by the integral

(−ie)2

∫
d4k

(2π)4
γµ

i

/p− /k −m+ iε
γµ

−i
k2 + iε

=: −iΣ(p) (7.1)

This integral is ill-defined, for the integrand does not fall off sufficiently for large

values of k. In fact, it appears to be linearly divergent,

Σ ∼
∫ Λ

k3dk
1

k

1

k2
∼
∫ Λ

dk ∼ Λ, (7.2)

when one introduces a cut-off at large momentum scale Λ� m.

The divergent part of Σ can be separated by expanding it on the “mass shell”

p2 = m2 of physical electrons. Using that Σ(p) is a Dirac matrix that can be a

combination of 14 and /p only, we can write

Σ(p) = Σ(p)
∣∣∣
/p=m

+ Σ′(p)
∣∣∣
/p=m

( /p−m) + . . .

= A14 +B( /p−m) + C( /p−m)2 + . . . (7.3)

A is linearly divergent, but, on dimensional grounds, the coefficient B can at most

be logarithmically divergent, whereas C and the following ones have finite integral

representations.

In (6.32), the electron self-energy is needed only on the electron’s mass shell. Its

effect is to add a correction to the lowest-order propagation of electrons according to

i

/p−m
+

i

/p−m
(−iΣ)

i

/p−m
=

i

/p−m− Σ
+O(e4)

=
i

(1−B)( /p−m)− A+O( /p−m)2
+O(e4)

=
i(1 +B)

/p−m− A+O( /p−m)2
+O(e4) (7.4)

The divergent coefficients A and B are seen to correspond to an infinite “renor-

malization” of the mass parameter of the electron and of wave functions: The mass
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that is physically relevant is the pole of the effective electron propagator, so it is sen-

sible to define mren. = m+A as the physical mass of electrons. Since A is a divergent

constant (in the limit of removing any artificial cutoff Λ), m, the bare mass, must be

likewise divergent to give a finite mass mren.. Similarly, one can absorb the divergent

constant (1 +B) =: Z−1
2 into a renormalization of the spinor fields ψren. = ψ/

√
Z2.

7.2 Vacuum polarization

The closed fermion loop appearing in (6.32) is called photon self-energy or vacuum-

polarization diagram. In momentum space, it is given by the integral

−(−ie)2

∫
d4k

(2π)4
tr γµ

i

/k −m+ iε
γν

i

/k − /q −m+ iε
=: −iΠµν(q) (7.5)

where tr refers to trace with respect to the spinor indices.

In contrast to the electron self-energy, we need the full functions Πµν(q) in (6.32),

where q is the momentum transfer from the external field to the scattered electron.

However, by naive power-counting, Πµν(q) looks even more divergent than Σ.

In order to separate divergent coefficients and hopefully be able to put them into

the as yet unrenormalized coupling e and photon wave-function, we need a careful

regularization of the ill-defined integral (7.5).

There are numerous possibilities for introducing a regulator. The most common

ones are:

1. Cutting off the modulus of the integration momentum after analytic continu-

ation to Euclidean momentum space k0 → ik4 by

−k2 = ~k2 + k2
4 < Λ2. (7.6)

While perfectly possible, this has the drawback of spoiling gauge invariance in

intermediary steps.

2. Lattice cut-off: Discretizing (Euclidean) space-time by replacing it with a lat-

tice of finite lattice spacing a implies |kµ| < π/a ∀µ. This regularization is

much used in numerical approaches to strongly coupled theories like quantum

chromodynamics. Its main drawback for us is that it produces expressions

which are difficult to evaluate by analytic means and that it violates Lorentz

invariance.

3. Pauli-Villars(-Rayski) regularization is a Lorentz-covariant alternative to cutoff-

regularization by introduction of extra fields with a wrong-sign kinetic term
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and mass Λ2 for each of the fields in the theory. The extra fields are decoupled

by sending Λ → ∞ in the end, but for finite Λ this improves the ultraviolet

behaviour of propagators because

1

k2 −m2
→ 1

k2 −m2
− 1

k2 − Λ2
=

m2 − Λ2

(k2 −m2)(k2 − Λ2)
. (7.7)

This is not well suited for the photon propagator, however, because a simple

mass term violates gauge invariance.

4. A more modern way of regularization which is symmetry-preserving to a large

extent is dimensional regularization which is due to ’t Hooft & Veltman (1972).

We shall use this method in what follows. The idea is to alter the number

of space-time dimensions to n < 4, derive formulae for the loop integrals as

functions of n, and to analyticly continue to a continuous variable n ∈ C,

keeping a small regulator ε, n = 4 − ε to separate divergences.20 In this

scheme one has to use that gµνgνµ = δµµ = n. The dimension of spinor space,

which actually goes like 2[n/2], is usually kept as 4. Renormalized physical

quantities do not depend on prescriptions like this (if they can be implemented

consistently).

In dimensional regularization, we have to calculate

Πµν(q) = −ie2
∫

dnk

(2π)n
tr(γµ( /k +m)γν( /k − /q +m))

(k2 −m2 + iε)((k − q)2 −m2 + iε)
(7.8)

For dimensions n < 4, e acquires the dimension of (mass)(4−n)/2, so if we want to

keep the fine-structure constant e2/(4π) a pure number free of mass dimension, we

need to introduce a referential mass scale µ and replace e2 → ẽ2 = e2µ4−n.

Using that tr(γµγν) = 4gµν and tr(γµγσγνγρ) = 4(gµσgνρ + gµρgσν − gµνgσρ) the

numerator in the above integrand is found to be

tr(. . .) = 4[2kµkν − kµqν − kνqµ + gµν(m
2 + k · q − k2)].

The denominators can be combined by using the trick of Feynman parametriza-

tion according to

1

a1a2 · · · an
= (n− 1)!

∫ 1

0

dx1

∫ 1−x1

0

dx2 · · ·
∫ 1−x1−...−xn−2

0

dxn−1

× 1

[an + x1(a1 − an) + . . .+ xn−1(an−1 − an)]n
. (7.9)

20This ε is of course different from the one appearing as iε in the propagators.
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In our special case we need

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2
(7.10)

with [ax+ b(1− x)] = [(k − xq)2 + q2x(1− x)−m2 + iε].

The advantage of doing so is that after a linear shift of the integration variable

k − qx → k, the denominator no longer depends on two 4-vectors and their inner

product, but only on their moduli k2 and q2.

Using the formulae of dimensional regularization derived in Appendix B one then

finds

Πµν(q) = −4iẽ2
∫ 1

0

dx

∫
dnk

(2π)n
2kµkν + 2(x2 − x)qµqν + gµν(m

2 + (x− x2)q2 − k2)

[k2 + q2x(1− x)−m2 + iε]2

=
4ẽ2

(4π)n/2

∫ 1

0

dx[m2 − q2x(1− x)]
n
2
−2

×
{

Γ(2− n

2
)[−2x(1− x)qµqν + x(1− x)gµνq2 + gµνm

2]

+ Γ(1− n

2
)(1− n

2
)︸ ︷︷ ︸

Γ(2−n
2
)

(
q2x(1− x)−m2

)
gµν

}

=
8ẽ2

(4π)n/2
[gµνq

2 − qµqν ] Γ(2− n

2
)

∫ 1

0

dx x(1− x)[m2 − q2x(1− x)]
n
2
−2

=: [gµνq
2 − qµqν ]Π(q2). (7.11)

This expression is divergent as n → 4, where Γ(2 − n
2
) develops a pole. Naive

power-counting suggested a quadratic divergence. This would have corresponded to

a pole already for n→ 2 as Γ(1− n
2
) does have it. However, this pole got cancelled,

so that Πµν(q) is actually only logarithmically divergent. The reason for this is gauge

symmetry, which is reflected by Πµν turning out to be proportional to the transverse

tensor gµνq
2 − qµqν . Gauge invariance implies certain identities among Feynman

diagrams, the so-called Ward identities, of which Πµν(q)q
µ ≡ 0 is one.

We can isolate the ultraviolet divergence in (7.11) by expanding n = 4 − ε.

Because of the pole in Γ(2− n
2
) = Γ( ε

2
) = 2

ε
− γE +O(ε), the other factors in (7.11)

need to be expanded up to and including terms linear in ε:∫ 1

0

. . . =

∫ 1

0

dx x(1− x)− ε

2

∫ 1

0

dx x(1− x) ln[m2 − q2x(1− x)] +O(ε2)

1

(4π)n/2
=

1

16π2

(
1 +

ε

2
ln(4π)

)
+O(ε2)

ẽ2 = e2
(
1 +

ε

2
lnµ2

)
+O(ε2) (7.12)
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Putting everything together we obtain

Π(q2) =
e2

2π2

{1

6

[
2

ε
− γE − ln

m2

4πµ2

]
−
∫ 1

0

dx x(1− x) ln
m2 − q2x(1− x)

m2

}
(7.13)

The divergent piece in Π(q2) can be absorbed in an infinite wave-function renor-

malization of the photon field.

Technically this is done by replacing Aµ = Z
1/2
3 Aµren.. In the Lagrangian

L = −1

4
FµνF

µν =
1

2
Aµ(gµν2−∂µ∂ν)Aν = −1

4
F ren.
µν F µν

ren.−(Z3−1)
1

4
F ren.
µν F µν

ren. (7.14)

this substitution generates terms which explicitly depend on e and thus enter the

interaction part of L. With the choice of

Z3 = 1− e2

2π2

1

6

(
2

ε
+ c

)
(7.15)

where c is an arbitrary finite constant, this produces an extra contribution, a counter-

term, to Πµν which has precisely the required tensor structure to subtract out the

infinities.

Different choices of the arbitrary constant c correspond to different renormaliza-

tion schemes. They are all physically equivalent, but it is of course important to

stick to one particular scheme until final results are obtained.

Popular schemes are:

1. Minimal subtraction (MS): Only the pole term of dimensional regularization is

subtracted, i.e. c = 0.

2. Modified minimal subtraction (MS): c = −γE + ln(4π). These constants in-

variably appear together with the pole term of dimensional regularization, so

formulae can be simplified by removing them together with 2
ε
.

3. Momentum subtraction (MOM): c is determined by the requirement that the

effective photon propagator equals the classical one at some fixed scale of mo-

mentum transfer, that is ΠMOM(q2 = −M2) = 0.

4. On-shell renormalization (OS): This is a natural scheme for QED. It requires

that on the mass-shell of the photons (the light-cone q2 = 0) there be no

corrections: ΠOS(q2 = 0) = 0.
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Figure 7.1: The real part (solid line) and the imaginary part (dashed line) of ΠOS(q2).

In the OS-renormalization scheme all of the terms in the square bracket in (7.13)

get subtracted. The remaining integral can be evaluated in terms of elementary

functions. For q2 < 4m2 it reads

ΠOS(q2) =
e2

6π2

{
5

6
+ 2

m2

q2
− (1 + 2

m2

q2
)

√
4m2 − q2

q2
arctan

√
q2

4m2 − q2

}
. (7.16)

For q2 > 4m2 the argument of the logarithm in (7.13) turns negative, because

x(1− x) varies between 0 and 1
4

in the integration domain of x. Π(q2) therefore has

a branch cut on the real axis for q2 > 4m2 with21

Im Π(q2 ± iε) = ±θ(q2 − 4m2)
e2

12π
(1 + 2

m2

q2
)

√
q2 − 4m2

q2
. (7.17)

The appearance of this imaginary part is related to the physical process of the decay

of a virtual (off-shell) photon with q2 > (2m)2 into real electron-positron pair.

7.2.1 Uehling potential

From (6.32) we see that an external potential Ãextµ (q) receives a correction from the

vacuum polarization diagram according to

Ãextµ (q)→
(
δρµ +

−igµσ
q2

(−i)Πσρ(q)

)
Ãextρ (q) (7.18)

21The imaginary part of Π does not depend on the chosen renormalization scheme because the
counter-terms have to be real.
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In the S-matrix element containing (6.32) the contributions proportional to qσqρ

in Πσρ(q) do not contribute, because after spinor wave functions are attached to the

amputated fermion lines, they give terms of the form ū(p + q)γµu(p) · qµ = 0, since

/q = ( /p+ /q −m)− ( /p−m). Only the term gσρq2Π(q2) enters, so the effect of (7.18)

is a multiplication of Aextµ (q)→ Aextµ (q)(1− Π(q2)).

In particular, a static (q0 = 0) Coulomb potential, which in momentum space is

∝ 1/~q2, gets modified according to

1

~q2
→ 1

~q2

(
1− Π(−~q2)

)
(7.19)

In the limit of nonrelativistic magnitude of |~q|, that is ~q2/m2 → 0,

ΠOS(−~q2)→ − e2

2π2

~q2

m2

∫ 1

0

dx[x(1− x)]2 = − e2~q2

60π2m2
(7.20)

and
1

~q2

(
1− Π(−~q2)

)
→ 1

~q2
+

e2

60π2m2
. (7.21)

Fourier transformed to configuration space this gives a potential of the form

V (|~x|) ∝ 1

4π|~x|
+

e2

60π2m2
δ3(~x). (7.22)

In the nonrelativistic limit, the effect of vacuum polarization is seen to be approxi-

mated by a positive δ-function contribution at the origin.

In hydrogen-like atoms, this has an effect only for s-states, since

|ψn,l(0)|2 =
Z3m3α3

πn3
δl,0. (7.23)

First-order perturbation theory leads to an energy shift

δEn,l = − Zαe2

15πm2
δl,0|ψn,0(0)|2 = −4Z4α5m

15πn3
δl,0. (7.24)

For the hydrogen atom (Z = 1), this result corresponds to a downward shift of the

2s1/2 level compared to the 2p1/2 level by an amount of ≈ 27 MHz. This prediction

by Uehling and Serber in 1935 was the motivation for the experiment by Lamb and

Retherford in 1947 which instead gave ≈ 1000 MHz, but in the opposite direction.

The missing main contributions, which are partly associated with the vertex diagram

in (6.32), were found soon thereafter by Bethe and others. By now, the theoretical

and the experimental values for the Lamb shift have been determined at an accuracy
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of ∼ 0.001% with perfect agreement. The vacuum polarization contribution, which

is part of the final result, is therefore equally well confirmed.

The nonrelativistic approximation to the corrected Coulomb potential (7.22) is

a very good approximation as concerns wave functions of the hydrogen atom, which

are nearly constant on the scale of the Compton wavelength 1/m.

The full form of the corrected Coulomb potential has already been found in 1937

by Uehler and Serber on the basis of Dirac’s hole theory. It is obtained from the

complete expression for (7.19) by a Fourier transformation which yields

V (|~x|) ∝ 1

|~x|
Q(|~x|) (7.25)

with22

Q(r) = 1 +
e2

6π2

∫ ∞
1

du e−2mru

(
1 +

1

2u2

) √
u2 − 1

u2
. (7.26)

In the limits of large and small distances, this can be evaluated as

Q(r) =

{
1 + e2

6π2 [ln
1
mr
− γE − 5

6
] for mr � 1

1 + e2

16π2
1√

π(mr)3
e−2mr for mr � 1

(7.27)

The correction to the Coulomb potential is seen to be concentrated within about

one Compton wavelength of the electron (Fig. 7.2). For small distances as one

approaches the bare charge, leaving the cloud of vacuum polarization behind, it

diverges logarithmically.

In the on-shell renormalization scheme, a static charge is effectively normalized

at ~q2 = 0, which corresponds to infinite distance. In high-energy physics it turns

out to be useful to define a running effective coupling constant which depends on

the typical momentum scale under consideration. From the high-momentum limit of

ΠOS(q2)

ΠOS(q2)→ α

3π

[
ln
−q2

m2
− 5

3

]
(7.28)

one can define

αeff.(q
2) =

α

1− α
3π

ln −q2
e5/3m2

(7.29)

with |q2| � m2. Including also the vacuum polarization effects of heavier leptons

and quarks, which also carry electric charge, one is lead to an effective fine-structure

22The Fourier integral can be evaluated by extending the integration over |~q| to the entire real
axis and then deforming the contour in the complex plane so that the only nontrivial contribution
comes from a branch cut that runs from |~q| = 2im to i∞.
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Figure 7.2: The effective charge Q(r) in the Uehling potential as a function of mr =

r/(λCompton/2π).

constant that at current accelerator energies is significantly higher than the low-

energy value of α ≈ 1/137, for instance αeff(−M2
W ) ≈ 1/128.23

7.3 Vertex diagram

For the complete order-e3 contribution to Coulomb scattering (6.32) we finally need

the one-loop diagram built from two electron propagators and one photon propagator.

It depends on the external momenta p, p′ of the in- and out-going electrons and thus

is a nonlocal correction to the local “classical” vertex −ieγµ. Let us denote the sum

by

−ieΓµ(p′, p) := −ieγµ − ieΛµ(p
′, p) (7.30)

The Feynman rules in Feynman gauge give, in dimensional regularization,

−ieΛµ(p
′, p) = (−iẽ)3

∫
dnk

(2π)n
−igνλ

k2 + iε
γν

i

/p′ − /k −m+ iε
γµ

i

/p− /k −m+ iε
γλ

(7.31)

where k is the momentum of the internal photon line.

23One might worry about the fact that this effective coupling becomes infinite for a finite, albeit
more than astronomical value of −q2 = m2 exp( 3π

α −
5
3 ) ∼ 10560m2. This is sometimes referred to

as Landau ghost. Perturbation theory cannot decide whether QED contains a Landau ghost and
thus an inconsistency. At any rate, this problem occurs at such extreme energy/momentum scales
that one even enters the regime of quantum gravity long before one would have to face it.
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For the purposes of Coulomb scattering, we need Λµ(p, p
′) only for on-mass-shell

momenta p2 = m2 = p′2, and sandwiched between Dirac spinors in the form

ū(p′)Λµ(p
′, p)u(p) = −iẽ3

∫
dnk

(2π)n
1

k2 − λ2 + iε

1

k2 − 2kp′ + iε

1

k2 − 2kp+ iε

×ū(p′)γν( /p′ − /k +m)γµ( /p− /k +m)γνu(p) (7.32)

where we have introduced a mass term λ2 into the photon propagator because oth-

erwise this expression is infrared-divergent. The mass-shell condition p2 = m2 = p′2

makes the internal fermion propagators behave as ∼ 1
k

for k → 0 so that the inte-

gral is logarithmically divergent at the origin for n = 4. Unfortunately, dimensional

regularization requires n < 4 which seems to make the problem only worse.

These on-shell infrared divergences cannot be absorbed by the standard renor-

malization which removes the ultraviolet divergences. Instead, the solution turns

out to be that the process of Coulomb scattering as considered in (6.32) is not really

measurable as such. We need detectors that measure the scattered electrons and also

detectors that can measure photons to distinguish it from a process that instead of

only elastically scattering electrons produced bremsstrahlung photons in addition.

However, any physical photon detector will be able to detect only the photons above

some minimum limiting energy. But photons can be emitted with arbitrarily low

energy (“soft bremsstrahlung”). A physical experiment measuring elastic scatter-

ing therefore always measures the combination of elastic scattering and unseen soft

bremsstrahlung. It turns out that the bremsstrahlung process likewise has infrared

singularities, which cancel in the sum. The measured cross section then only de-

pends (logarithmically) on the value of the minimal photon energy that can still be

detected, but no longer on the photon mass λ that one introduces to make the Feyn-

man integrals finite in the infrared. This solution of the problem was found by Bloch

& Nordsieck in 1937 already before relativistic perturbation theory was developed.

A complete treatment of infrared divergences in QED to all orders of perturbation

theory was achieved in 1961 by Yennie et al.

We shall be content here to evaluate Λµ in the limit λ→ 0, which will give terms

involving a logarithm of λ and terms independent of λ.

Before doing the calculation, we can anticipate the structure of Λµ(p
′, p) in any

order of perturbation theory as follows. Λµ (as well as Γµ) is a Lorentz vector and a

matrix in spinor space. The only Lorentz vectors available are the momenta pµ, p
′
µ,

and gµν . (The external photon’s momentum is given by the difference (p′−p)µ =: qµ

because of momentum conservation.) Λµ must therefore be of the form

Λµ(p
′, p) = γµA+ (p′ + p)µB + (p′ − p)µC (7.33)
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where the coefficients A, B, and C may involve quantities like /p and /p′ in addition

to Lorentz scalars times 14. On-shell and sandwiched by Dirac spinors, however, one

can bring /p′ and /p to the left and right, respectively, which in the first term may

give extra contributions proportional to p′µ or pµ, and replace /p′, /p → m. We can

therefore take the coefficients A, B, and C to be simple Lorentz scalars. Because

p2 = m2 = p′2, the only nontrivial scalar is q2 = −2p′ · p+ 2m2.

It can be proved generally that as a consequence of gauge invariance Λµ as well

as Γµ satisfy qµū(p′)Λµ(p
′, p)u(p) = 0 on mass-shell. At one-loop order, this may

be verified directly on the explicit expression (7.32). The first two terms in (7.33)

vanish when contracted with qµ and sandwiched by on-shell spinors, but the last one

does not. Hence, C = 0.

The general on-shell vertex function Γµ of QED therefore contains two indepen-

dent “structure functions” A and B. An equivalent decomposition can be written

down by using the so-called Gordon identity :

From the fact that

0 = ū(p′) [ /a( /p−m) + ( /p′ −m) /a]u(p)

= −2mū /au+ ū

(
1

2
{ /p′ + /p, /a}+

1

2
[ /p′ − /p, /a]

)
u (7.34)

for arbitrary /a one immediately derives that

ū(p′) [−2mγµ + (p+ p′)µ + iσµνqν ]u(p) = 0 (7.35)

with σµν = i
2
[γµ, γν ] and q ≡ p′ − p.

The general form of the on-shell vertex correction Λµ(p
′, p) can therefore be writ-

ten as

Λµ(p
′, p) = γµF1(q

2) +
iσµνq

ν

2m
F2(q

2). (7.36)

Since the first term is proportional to the lowest-order vertex between photons

and electrons, it can be changed by renormalization. Indeed, this is again necessary

to remove an ultraviolet divergence.

It turns out that gauge invariance relates the divergent piece in Λµ to the divergent

electron self-energy Σ(p) by the Ward identity

lim
p′→p

Λµ(p, p
′) = − ∂

∂pµ
Σ(p) (7.37)

which at one-loop order can be verified directly by comparing the Feynman inte-

grals (7.31) and (7.1). On-shell renormalization of the electron propagator therefore
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implies the renormalization condition

ū(p′)ΛOS
µ (p′, p)u(p)

∣∣∣
p2=m2=p′2,p=p′

= 0 ⇒ F ren.
1 (0) = 0 (7.38)

The other structure function F2, called the magnetic structure function, cannot

be renormalized this way, and indeed it turns out to be finite.

The explicit calculation of F1 and F2 from the Feynman integral (7.32) is carried

out in Appendix C in order to make this chapter more readable. The final result is

F ren.
1 (q2) =

e2

16π2

{
−
∫ 1

0

dy
2m2 − q2

m2 − q2y(1− y)
ln
m2 − q2y(1− y)

λ2
+ 2 ln

m2

λ2

−
∫ 1

0

dy ln
m2 − q2y(1− y)

m2
+

∫ 1

0

dy
6m2 − 2q2

m2 − q2y(1− y)
− 6

}
(7.39)

F2(q
2) =

e2

16π2
2

∫ 1

0

dy
m2

m2 − q2y(1− y)
(7.40)

The magnetic structure function F2 turns out to be not only ultraviolet finite,

but infrared finite, too.

In the limit of small momentum transfer (7.39) and (7.40) are easily evaluated as

F ren.
1 (q2) =

α

3π

q2

m2

(
ln
m

λ
− 3

8

)
+O(q4/m4) (7.41)

F2(q
2) =

α

2π

(
1 +

1

6

q2

m2
+O(q4/m4)

)
. (7.42)

7.4 Effective interaction with a weak external field

We finally have all pieces of the one-loop contributions (6.32) to the interaction

of physical (on-shell) electrons with a weak external electromagnetic field. They

can be summarized as follows: Because the electrons are on mass shell, the self-

energy insertions in external lines can be absorbed in the physical definition of the

electron mass and a proper normalization of the spinor wave functions, if the on-

shell renormalization scheme is used. The vacuum polarization diagram is rendered

finite by a renormalization of the electromagnetic fields and introduces a momentum-

dependent modification of the external field according to (7.18). The vertex diagram

has to be renormalized in a way consistent with renormalization of the electron self-

energy. It contributes two different corrections to the interaction of an electron with

the external field of the form (7.36). All together the interaction vertex of on-shell

electrons gets replaced by an effective interaction according to

−ieγµÃextµ(q)→ −ie
{
γµ
(
1− ΠOS(q2)

)
+ ΛOS

µ (p, p′)
}
Ãextµ(q). (7.43)
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At low momentum transfer q, this effective interaction reads

−ie
{
γµ

[
1 +

αq2

3πm2

(
ln
m

λ
− 3

8
− 1

5

)]
+

i

2m

α

2π
σµνq

ν

}
Ãextµ(q). (7.44)

By replacing q by the derivative operator i∂, this can be written in configuration

space as

−ie
{
γµ

[
1− α

3πm2

(
ln
m

λ
− 3

8
− 1

5

)
2x

]
− 1

2m

α

2π
σµν∂

ν

}
Aextµ(x). (7.45)

7.4.1 Anomalous magnetic moment

Using the Gordon identity (7.35) to rewrite the lowest order vertex in (7.44) as

γµ =
1

2m
(p+ p′) +

i

2m
σµνq

ν

the effective interaction can be written as sum of a spin-independent convective term

and one that involves spin nontrivially. From (7.45) we see that the latter has the

form

ie
(
1 +

α

2π

) 1

2m
σµν∂

νAextµ(x) = −ie
(
1 +

α

2π

) 1

2m

1

2
σµνF

µν . (7.46)

In a constant magnetic field this is just the magnetic dipole interaction energy

1

2
σµνF

µν
∣∣∣
~E=0

= ~Σ · ~B. (7.47)

Since we already know that the lowest-order term in (7.46) corresponds to the

gyromagnetic ratio g = 2, we see that the low-momentum limit of the vertex structure

function F2 gives rise to a modified value

g = 2(1 + a) ≡ 2
(
1 +

α

2π
+O(α2)

)
(7.48)

called the anomalous magnetic moment of the electron, derived first by Schwinger in

1948.

The current experimental value (Van Dyck, Schwinberg & Dehmelt 1987) reads

a = 1 159 652 188.4(4.3)× 10−12 (7.49)

The one-loop result (7.48) is numerically a(1) = α
2π

= 0.0011614 . . .. It agrees

with the experimental value for a in 3 significant digits; for g it’s even 6 digits!

At two-loop order (α2), 7 vertex diagrams have to be evaluated. The first calcu-

lation was done in 1950 by Karplus & Kroll and found to disagree with experiment in

67



QED – Version November 3, 2003 7.4 Effective interaction with a weak external field

1957. Sommerfield & Petermann then found the error in the theoretical calculation,

after which there was agreement in 8 digits of g.

At three-loop order there are 72 Feynman diagrams which have been calculated

by Kinoshita and others during 1976-1995. All but 5 of these have been calculated

analytically, the remaining numerically. The 891 Feynman diagrams at four-loop

order (α8) have been calculated since 1978 by Monte-Carlo numerical integration.

Using α as given by quantum Hall effect measurements, the theoretical prediction is

(Kinoshita 1995)

a(1−4) = 1 159 652 201(2)(27)× 10−12 (7.50)

where the first error given is due to the theoretical uncertainty from the numerical

integrations and the second error from the fine-structure constant. Evidently, there

is perfect agreement of theory and experiment.

The theoretical result can even be turned around to give a value for the fine-

structure constant α from the experimental value of a that is more accurate than

the best direct measurements of α. This gives

α−1(a) = 137.035 999 44(57). (7.51)

7.4.2 Main contribution to the Lamb shift

In (7.22) we have considered the contribution of vacuum polarization to a Coulomb

potential. The additional δ3(~x) term that we obtained corresponds only to the term

∝ 1
5
2xA

extµ in (7.45). Obviously, this is not the only term that will contribute to the

Lamb shift. Unfortunately, the other terms contain a logarithmic infrared divergence

which we have cut off by introducing an unphysical photon mass.

In the Coulomb scattering problem, this infrared divergence has to be combined

with one that would appear in the soft bremsstrahlung process.

On the other hand, in the case of the hydrogen atom, the electrons are not really

on the mass shell p2 = m2 of free electrons — they are bound! Now the infrared

divergence appears only in the limit p2 → m2. In order to calculate the Lamb shift,

the on-shell vertex diagram is not sufficient.

However, one can obtain a crude estimate for the main contribution to the Lamb

shift from the logarithmically divergent term. According to (3.74), an electron bound

in a hydrogen-like atom has energy p0 ≈ m(1− Z2α2

2n2 ) =: m− V . The kinetic energy

of the electron is in good approximation nonrelativistic and thus related to V by

~p2/2m = −1
2
V as a consequence of the virial theorem. Taken together, the electron
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is off-mass-shell by an amount

p2 −m2 = −3m2Z2α2/2n2.

The denominators in (7.32) coming from the electron propagators are therefore not

really 1/(k2 − 2kp) but

1

k2 − 2kp+ p2 −m2
=

1

k2 − 2kp−O(m2α2)
.

The k integration is therefore not infrared divergent, but effectively cut off at pho-

ton momenta k ∼ mα2. Taking this as infrared cutoff λ in (7.45) gives a large

contribution from the logarithm. Instead of (7.24) we arrive at the estimate

δEn,l ∼ +
4Z4α5m

3πn3
ln(137)2︸ ︷︷ ︸
≈10

δl,0, (7.52)

which dominates over the other contributions from (7.45). In the hydrogen atom,

this corresponds to a Lamb shift of ≈ 1300 MHz which has both the correct sign and

the correct order of magnitude.

More careful (and more complicated) calculations at one-loop order have been

performed in 1947 by Bethe and subsequently by Kroll & Lamb and French & Weiss-

kopf. These give 1052.19 MHz (s. Weinberg 1995).

Two current experimental values are 1057.845(9) MHz (Lundeen and Pipkin 1986)

or 1057.857(2) MHz (Sokolov and Yakolev 1982). Accurate theoretical calculations

involve more uncertainties than in the case of the anomalous magnetic moment of the

electron (coming from the finite size of the proton and from nuclear recoil effects).

Recent calculations vary between 1057.85 and 1057.88 MHz, in excellent agreement

with experiment, although not as phantastic as is the case with g − 2.
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A Bernoulli and Euler-MacLaurin

Bernoulli numbers are defined through

t

et − 1
=:

∞∑
n=0

tn

n!
Bn (A.1)

and the first few read

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B2n+1 = 0 ∀n ∈ N. (A.2)

Bernoulli polynomials are defined by

Bn(x) =
n∑
k=0

(
n

k

)
Bn−kx

k (A.3)

or through their generating function

ext
t

et − 1
=:

∞∑
n=0

tn

n!
Bn(x). (A.4)

Their most important properties are

B′n(x) = nBn−1(x) (A.5)

Bn(1) = Bn(0) ∀n 6= 1 (A.6)

⇒
∫ 1

0

Bn(x)dx =
1

n+ 1
Bn+1

∣∣∣1
0

= 0 ∀n ≥ 1 (A.7)

With the help of the Bernoulli polynomials one can derive the Euler-MacLaurin

formula as follows.

In a first step use B′1(x) = B0(x) ≡ 1 and B1(1) = −B1(0) = 1
2

to write for the

integral of a sufficiently differentiable function∫ 1

0

f(x)dx =

∫ 1

0

f(x)B′1(x)dx = 1
2
(f(0) + f(1))−

∫ 1

0

f ′(x)B1(x)dx (A.8)

Continue by using (A.5) and (A.6) to rewrite

−
∫ 1

0

f ′(x)B1(x)dx = −1
2

∫ 1

0

f ′(x)B′2(x)dx

= −1
2
B2 (f ′(1)− f ′(0)) + 1

2

∫ 1

0

f ′′(x)B2(x)dx (A.9)
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and so forth until one has∫ 1

0

f(x)dx = 1
2
(f(0) + f(1))−

k∑
j=1

B2j

(2j)!

[
f (2j−1)(1)− f (2j−1)(0)

]
+Rk (A.10)

with

Rk = − 1

(2k + 1)!

∫ 1

0

f (2k+1)(x)B2k+1(x)dx.

Continuing this formula to integrals
∫ 2

1
,
∫ 3

2
, . . .

∫ n
n−1

and summing gives the Euler-

MacLaurin formula for the difference between sums and integrals

n∑
i=0

f(i) =

∫ n

0

f(x)dx+ 1
2
[f(0) + f(n)] +

k∑
j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+Rn,k,

(A.11)

where

Rn,k = − 1

(2k + 1)!

∫ n

0

f (2k+1)(x)B̂2k+1(x)dx

and B̂n(x) = Bn(x− [x]). When convergent, this may be extended to n→∞.
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B Dimensional regularization

Using Feynman parametrization (7.9), the momentum integration of one-loop Feyn-

man diagrams can be reduced to integrals of the form

J =

∫
dnk

1

(k2 + 2p · k −M + iε)α
=

∫
dnk

1

(k2 − L+ iε)α
(B.1)

with L = p2+M . Integrals which have 4-vectors kµ in the numerator can be obtained

from J by differentiation with respect to pµ.

In dimensional regularization, n is assumed to be sufficiently small so as to ensure

convergence. Ultraviolet divergences are isolated as singularities in the complex n-

plane after an analytic continuation of n ∈ N to n ∈ C. For this we have to evaluate

J for arbitrary integer values of n first.

The integrand in J has poles at k0 = ±[
√
~k2 + L− iε]. The pole prescription is

such that one can deform the integration path for k0 to run from −i∞ to i∞ with

negligible arcs at infinity if α > 1
2
. This “Wick rotation” turns the Minkowskian

(momentum) space into an Euclidean one: k2 → −k2
E = −(k2

1 + . . . + k2
n) with

k0 = ikn and
∫
dnk → i

∫
dnkE.

Denoting r =
√
k2
E, the integral (B.1) thus becomes

J = i(−1)α
∫
dΩn

∫ ∞
0

rn−1dr

(r2 + L)α
. (B.2)

For general n, the latter integral is elementary and reads∫ ∞
0

rn−1dr

(r2 + L)α
=

Γ(n
2
)Γ(α− n

2
)

2Γ(α)
L

n
2
−α. (B.3)

∫
dΩn is the area of a unit sphere in n dimensions. It can be most easily calculated

by the following trick:

(
√
π)n =

(∫
dx e−x

2
)n

=

∫
dnx exp

(
−

n∑
i=1

x2
i

)

=

∫
dΩn

∫ ∞
0

dx xn−1e−x
2

=

∫
dΩn

1

2

∫ ∞
0

d(x2) (x2)
n
2
−1e−(x2)

=
1

2
Γ(
n

2
)

∫
dΩn ⇒

∫
dΩn =

2πn/2

Γ(n
2
)
. (B.4)

This gives

J = i(−1)απn/2
Γ(α− n

2
)

Γ(α)
L

n
2
−α, (B.5)
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which is already in a form which can be taken as the analytic continuation to n, α ∈ C.

By differentiating the first version of J in (B.1) with respect to pµ at pµ = 0

and the result (B.5) with L = p2 +M , one can now easily derive the following more

complicated formulae∫
dnk

kµkν
(k2 − L+ iε)α

= −CΓ(α− n

2
− 1)

1

2
L

n
2
−α+1gµν (B.6)∫

dnk
kµkνkλkρ

(k2 − L+ iε)α
= −CΓ(α− n

2
− 2)

1

4
L

n
2
−α+2

×{gλµgρν + gλνgρµ + gµνgρλ} (B.7)

with C := i(−1)απn/2/Γ(α). Integrals with an odd number of vectors k in the

numerator vanish by symmetry.

Recall that Euler’s Gamma function Γ(z), which is defined as the analytic con-

tinuation of the integral

Γ(z) =

∫ ∞
0

e−ttz−1dt, Re z > 0, (B.8)

has simple poles at z = 0,−1,−2, . . .. In the vicinity of the pole at z = 0 it has the

expansion

Γ(ε) =
1

ε
− γE +O(ε) (B.9)

with γE defined by

γE = −
∫ ∞

0

dt e−t ln t = 0.5772 . . . (B.10)

(Euler-Mascheroni constant).

Further,

Γ(z + 1) = zΓ(z) (B.11)

Γ(n+ 1) = n! for n ∈ N, Γ(1
2
) =
√
π. (B.12)
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C On-shell one-loop vertex diagram

This appendix gives some of the details of the evaluation of the on-shell vertex

diagram (7.32) in dimensional regularization.

Numerator:

In a first step, the numerator of the integrand in (7.32) can be simplified by

ū(p′)γν( /p′ − /k +m)γµ( /p− /k +m)γνu(p)

= ū(p′){γν , /p′ − /k +m}γµ{ /p− /k +m, γν}u(p)
= ū(p′)(2p′ν − γν /k)γµ(2pν − /kγν)u(p). (C.1)

The number of γ-matrices can be further reduced according to

(2p′ν − γν /k)γµ(2pν − /kγn) (C.2)

= γµ[4m
2 − 2q2 − 4(p+ p′) · k + (n− 2)k2] + /k[2(2− n)kµ + 4(p+ p′)µ]− 4mkµ

where γνγ
ν = n14 has been used as well as q2 ≡ (p′ − p)2 = 2m2 − 2p · p′.

Denominators:

a) In the terms where there is a k2 in the numerator, we do not encounter infrared

divergences and do not need a regulating photon mass. In these, we cancel against

the denominator from the photon propagator, and combine the denominators from

the two electron propagtors by (7.10)

[k2 − 2p′ · k]−1[k2 − 2p · k]−1 =

∫ 1

0

dy[k2 − 2k · (py + p′(1− y)]−2 (C.3)

With (pµy + p′µ(1− y))2 = m2 − q2y(1− y) formula (B.5) gives∫
dnk[k2 − 2k · (py + p′(1− y)]−2 = iπn/2Γ(2− n

2
)
[
m2 − q2y(1− y)︸ ︷︷ ︸

=:M(y)

]n
2
−2

(C.4)

b) In all other terms we have three denominators to combine by (7.9)

[k2 − λ2]−1[k2 − 2p′ · k]−1[k2 − 2p · k]−1

= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2[k
2 − 2k · (p′z1 + pz2)− λ2(1− z1 − z2)]

−3 (C.5)
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Abbreviating rµ := p′µz1 + pµz2 the momentum integrals that we need can be

derived from (B.5) and (B.6) as∫
dnk[k2 − 2k · r − λ2(1− z1 − z2)]

−3

{
1; kµ; /kkµ

}
= −iπ

n/2

2
L

n
2
−2

{
Γ(3− n

2
); (C.6)

Γ(3− n

2
)rµ; (C.7)

Γ(3− n

2
) /rrµ −

1

2
Γ(2− n

2
)Lγµ

}
(C.8)

with

L = r2 + λ2(1− z1 − z2) = m2(z1 + z2)
2 + λ2(1− z1 − z2)− z1z2q

2 (C.9)

Sandwiched between on-shell spinors we have /r = m(z1 + z2). Except for one

vector rµ, the integral and the integration domain is invariant under replacing z1 ↔
z2. This can be used to replace rµ → 1

2
(z1 + z2)(p+ p′)µ.

Next, change variables by z1 = xy, z2 = x(1− y) and∫ 1

0

dz1

∫ 1−z1

0

dz2 →
∫ 1

0

dx dy x (C.10)

Altogether we now have

Λµ(p
′, p) =

e2

(4π)n/2
(n− 2)Γ(2− n

2
)γµ

∫ 1

0

dyM
n
2
−2(y)

− e2

(4π)n/2

∫ 1

0

dx dy xL
n
2
−3(x, y)

{
Γ(3− n

2
)
[
4m2 − 2q2 − (p+ p′)2x

2

]
γµ

+(2− n)Γ(3− n
2
)mx2(p+ p′)µ − (2− n)Γ(2− n

2
)L(x, y)γµ

+2Γ(3− n
2
)mx(p+ p′)µ

}
(C.11)

with L(x, y) := x2M(y) + λ2(1− x) and M(y) as introduced in (C.4).

Using the Gordon identity (7.35) we can now collect the terms contributing to the

structure functions F1 and F2 introduced in (7.36). In terms without singularities as

n→ 4, we can put n = 4. The only singular piece is Γ(2− n
2
). Expanding in analogy

to (7.12) and subtracting the divergent term by F ren.
1 (q2) = F1(q

2)− F1(0) gives the

results (7.39) and (7.40), where terms that vanish for λ→ 0 have been discarded.
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Figure C.1: Real part (solid line) and imaginary part (dashed line) of Li2(x).

Analytical results (for completeness only)

The magnetic structure function F2 can be evaluated in terms of elementary functions

as

F2(q
2) =

α

π

ξ ln ξ

ξ2 − 1
with

q2

m2
=: −(1− ξ)2

ξ
. (C.12)

ξ runs from 0 to 1 as q2 runs from −∞ to 0. Beyond that one needs to continue

analyticly.

The integrals in (7.39) can be written in closed form in terms of the so-called

Spence function, or dilogarithm, Li2:

Li2(x) = −
∫ x

0

ln(1− t)
t

dt =
∞∑
n=1

xn

n2
. (C.13)

(This is a special member of the family of so-called polylogarithmic functions Lim(x) :=∑∞
n=1

xn

nm , of which only Li0(x) = x/(1− x) and Li1(x) = − ln(1− x) are elementary

functions.) Special values are Li2(−1) = −π2/12, Li2(0) = 0, Li2(+1) = +π2/6.

With (C.13), F ren.
1 can be written as

F ren.
1 =

α

2π

{
2

(
1 +

1 + ξ2

1− ξ2
ln ξ

)
ln
m

λ
− 3(1 + ξ2) + 2ξ

2(1− ξ2)
ln ξ

+
1 + ξ2

1− ξ2

[
π2

6
− 1

2
ln2 ξ + 2Li2(−ξ) + 2 ln ξ ln(1 + ξ)

]}
. (C.14)
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