Introduction to quantum electrodynamics 135.045 - (VO 2,0) 2015S

Homework \#03 (Mar 23, 2015)

3.1 Show that the Clifford algebra relation (2.12) $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1}$ is left unchanged by $\gamma^{\mu}=S^{-1}(L) \gamma^{\rho}\left(L^{-1}\right)^{\mu}{ }_{\rho} S(L)$ and $\gamma^{\nu}=S^{-1}(L) \gamma^{\sigma}\left(L^{-1}\right)^{\nu}{ }_{\sigma} S(L)$. (Eq. (2.26)).
3.2 Show that $\left[\gamma^{\mu}, T\right]=\omega^{\mu}{ }_{\nu} \gamma^{\nu}$ is solved by $T=-(i / 2) \omega_{\mu \nu} S^{\mu \nu}$ with $S^{\mu \nu}:=$ (i/4) $\left[\gamma^{\mu}, \gamma^{\nu}\right]$. (Eq. (2.29))
3.3 Check that $S=\mathbf{1}-\frac{\varepsilon}{4}\left[\gamma^{1}, \gamma^{2}\right]=\mathbf{1}+\varepsilon \frac{i}{2} \Sigma_{3}$ with $\Sigma_{3}=\sigma_{3} \oplus \sigma_{3}$ in the Dirac and in the chiral representation. (Eq. (2.31))

