No homework for November 6; note that the lecture is back in Sem 136 (FH, 10th floor).

Exercise 4 (please return by November 13): The quaternions are the non-commutative generalization of the complex numbers given by $\mathbb{H}=\{q=x+i y+j u+k v: x, y, u, v \in \mathbb{R}\}$ with $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j$. Denote by $S p(n)$ the group of linear transformations of \mathbb{H}^{n} that preserve the hermitian form $\sum_{i=1}^{n} \bar{q}_{i} r_{i}$, where $\bar{q}=x-i y-j u-k v$. Show that $S p(n)=S p(2 n, \mathbb{C}) \cap U(2 n)$.
Hint: Identify quaternions with pairs (z, w) of complex numbers via $q=z+j w$.

