
1 Ehrenfesttheorem

For analytic Potentials we can derive the following Formula:

[p̂, V (x̂)] = [p̂,

∞∑
n=1

vn(x̂)n]

=

∞∑
n=1

vn[p̂, (x̂)n] =

∞∑
n=1

vnn(x̂)n−1(−ih̄) = −ih̄dV (x̂)

dx̂

We can use this result to calculate the time development of the mean values of
p̂, x̂.

ih̄
p̂

dt
= [p̂,

(p̂)2

2m
+ λ(x̂)n] = [p̂, λ(x̂)n] = −ih̄n(x̂)n−1

⇒ dp̂

dt
= −n(x̂)n−1 (1)

dx̂

dt
= [x̂,

(p̂)2

2m
+ λ(x̂)n] = [x̂,

(p̂)2

2m
] =

1

2m
[x̂, (p̂)2] = ih̄

p̂

m

For all n we have:

d < x̂ >

dt
= ih̄

< p̂ >

m

For n=0:

d < p̂ >

dt
= 0

For n=2:

d < p̂ >

dt
= −2λ < x̂ >

In general for 0 ≤ n ≤ 2 we can write:

<
dV (x̂)

dx̂
>=

dV (< x̂ >)

d < x̂ >

This means that the mean values of p̂, x̂ follow the classical equation of moti-
on.(Ehrenfest theorem)

1



2 Virialsatz der QM

The quantum mechanical operator corresponding to the classical observable
xp(virial) is not x̂p̂ since this operator is not hermitian but 1

2 (x̂p̂ + p̂x̂). This
procedure is called Weyl symmetrization.

v̂ =
1

2
(x̂p̂+ p̂x̂)

ih̄
d < v̂ >

dt
=< [v̂, H] >=< v̂H > − < Hv̂ >= E(< v̂ > − < v̂ >) = 0

ih̄
dv̂

dt
=

1

2
[x̂p̂+ p̂x̂,

(p̂)2

2m
+ λ(x̂)n]

=
1

2
([x̂p̂,

(p̂)2

2m
] + [x̂p̂,

(p̂)2

2m
] + [p̂x̂, λ(x̂)n]] + [p̂x̂, λ(x̂)n]])

=
1

2
(x̂[p̂,

(p̂)2

2m
] + [x̂,

(p̂)2

2m
]p̂+ p̂[x̂,

(p̂)2

2m
] + [p̂,

(p̂)2

2m
]x̂+

x̂[p̂, λ(x̂)n] + [x̂, λ(x̂)n]p̂+ p̂[x̂, λ(x̂)n] + [p̂, λ(x̂)n]x̂)

=
1

2
([x̂,

(p̂)2

2m
]p̂+ p̂[x̂,

(p̂)2

2m
] + x̂[p̂, λ(x̂)n] + [p̂, λ(x̂)n]x̂)

= ih̄
(p̂)2

2m
− ih̄x̂nλ(x̂)n−1

⇒d < v̂ >

dt
=<

(p̂)2

m
> −nλ < (x̂)n >= 2 < T > −n < V >

For < p̂2 > and n = 2 we get:

< E >=< T > + < V >

2 < T >= 2 < V >

< E >= 2 < T >=< p̂2 > /m⇒< p̂2 >=< E > m
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3 Time development and measurement

The eigenvalues of the observable Ô are o = ± 1
2 these are the possible values

that can be measured for the observable Ô. To calculate the time development
of the system we �rst calculate the eigenbasis of the Hamiltonian:

H|+ g >= g|+ g > H| − g >= −g| − g >

|+ g >=
1√
2

(|1 > −|2 >)

| − g >=
1√
2

(|1 > +|2 >)

The state at t=0 is |ψ(t = 0) >= |1 >. To get the time development we
rewrite this state in the eigenbasis of the Hamiltonian:

|1 > =
1√
2

(|+ g > +| − g >)

|ψ(t) > =
1√
2

(e−igt/h̄|+ g > +e−igt/h̄| − g >)

= cos(gt/h̄)|1 > +isin(gt/h̄)|2 >

The Possibilities for the measurement of o = ± 1
2 are given by:

P (o =
1

2
)(t) = | < 1|ψ(t) > |2 = cos(gt/h̄)2

P (o = −1

2
)(t) = | < 2|ψ(t) > |2 = sin(gt/h̄)2

If on the other hand the initial state would have been |2 > the time development
would be:

|ψ2(t) > =
1√
2

(e−igt/h̄|+ g > −e−igt/h̄| − g >)

= −isin(gt/h̄)|1 > −cos(gt/h̄)|2 >

Now we consider the following situation: At t = 0 the system is in the state |1>
then at t = t∗/2 we measure Ô. Depending on the result the system is either
in the state |1> or |2>. Afterwards we let the system evolve and at t = t∗ we
measure Ô again.
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The Probability to �nd o = 1
2 at t = t∗/2 and o = 1

2 at t = t∗ is denoted
by P ( 1

2 ,
1
2 ). The Probability to �nd o = 1

2 at t = t∗/2 and o = − 1
2 at t = t∗ by

P ( 1
2 ,−

1
2 ) and so forth.

P (
1

2
,

1

2
) = Cos4(gt∗/(2h̄))

P (
1

2
,−1

2
) = Cos2(gt∗/(2h̄))Sin2(gt∗/(2h̄))

P (−1

2
,

1

2
) = Sin4(gt∗/(2h̄))

P (−1

2
,−1

2
) = Cos2(gt∗/(2h̄))Sin2(gt∗/(2h̄))

The total probability to �nd the value o = 1
2 at t = t∗ if we measure the

observable at t = t∗/2 is:

P̃ (o =
1

2
) = P (

1

2
,

1

2
) + P (−1

2
,

1

2
) = Cos4(gt∗/(2h̄)) + Sin4(gt∗/(2h̄)) (2)

which is di�erent from the result we got without measurement at t = t∗/2.
If on the other hand we look at |ψ(t) and ask for the probability to �nd the

energy ±g at time t = t∗. We �nd that P (E = +g) = 1/2 and P (E = −g) = 1/2
for any time. If however we measure the energy once we know that the system
stays in that eigenfunction for all time.(This is only true since the Hamilton is
time independent)
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