4. Übung zur Quantenmechanik I

Wintersemester 2016/2017

TUTORIUM: Freitag, 4.11.2016.

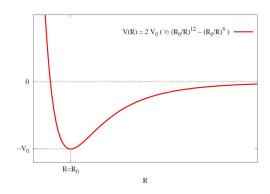
7. Rattling Modes

1+2+1=4 Punkte

Ein Rattling Atom befindet sich im ersten angeregten Zustand ψ_1 des harmonischen Oszilators mit Frequenz ω und Masse m. Durch die Wechselwirkung mit dem elektronischen System hat man eine kurze Zeit t später den Zustand

$$e^{-iHt/\hbar}\psi_1 \sim \left[1 - iHt/\hbar\right]\psi_1 = \left[1 - i\hbar\omega\left(a^\dagger a + 1/2\right)t/\hbar - ig\left(a^\dagger + a\right)\bar{n}_e t\right]\psi_1 := \psi(t),$$

wobei \bar{n}_e hier approximativ die zeitlich gemittelte Elektronendichte ist und g die Elektron-Phonon-Kopplung darstellt. a und a^{\dagger} sind die Erzeugungs- und Vernichtungsoperatoren (Leiter-operatoren).


- a) Berechnen Sie die Wahrscheinlichkeitsverteilung $|\psi(x)|^2$ des obigen Zustands.
- b) Berechnen Sie mithilfe der Leiteroperatoren: Ortserwartungswert $\langle x \rangle$, Impulserwartungswert $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$ sowie die Orts- und Impulsunschärfen Δx und Δp mit obigem Zustand $\psi(t)$. Ist die Heisenbergsche Unschärferelation erfüllt?
- c) Ist $\psi(t)$ normiert? Überlegen Sie zu welcher Ordnung in t Ihre Rechnung in a) und b) sinnvoll ist.

8. Rechnungen mit Erzeugern und Vernichtern

2 Punkte

Zwischen welchen Eigenzuständen ψ_n des harmonischen Oszilators sind die Matrixelemente von x^3 , p^3 , x^4 und p^4 nicht null?

Die Wechselwirkungen eines einfachen Moleküls mit zwei Atomen gleicher Masse M im Abstand R voneinander können wie folgt modelliert werden: für kleine Abstände $R \ll R_0$ tritt aufgrund der Überlappung der elektronischen Wellenfunktionen eine stark repulsive Kraft auf, während für große Abstände $R \gg R_0$ die Kraft aufgrund der van-der-Waals-Wechselwirkung attraktiv wird. Diese Überlegungen führen auf das folgende Modellpotential (Lennard-Jones Potential):

$$V(R) = 2V_0 \left[\frac{1}{2} \left(\frac{R_0}{R} \right)^{12} - \left(\frac{R_0}{R} \right)^6 \right]$$
 (1)

Abbildung 1: Lennard-Jones Potential.

- a) Betrachten Sie für die Beschreibung von Molekülschwingungen das Relativkoordinatensystem mit dem Lennard-Jones Potential und berechnen Sie approximativ die Energien des Grundzustands und der ersten zwei angeregten Zustände der Schwingungen dieses Moleküls.
- b) Schätzen Sie, wie groß die Korrekturen höherer Ordnung in $R R_0$ zu im Aufgabenteil a) berechneten Energien sind. Unter welchen Bedingungen sind die Abschätzungen von a) eine gute Nährung?