4. Plenum aus Statistischer Physik

4.6.2010

1. (Dichtematrix)

Gegeben sei ein Ensemble von Spin-1/2-Teilchen. Die Dichtematrix des Ensembles ist in der Basis $\{|z+\rangle,|z-\rangle\}$ gegeben durch

$$\rho = \begin{pmatrix} 1/2 & a - 1/2 \\ a - 1/2 & 1/2 \end{pmatrix}.$$

 $\{|z+\rangle,|z-\rangle\}$ sind die Eigenzustände des Spinoperators \hat{S}_z mit Eigenwerten $+\hbar/2$ und $-\hbar/2$.

- (a) Schreiben Sie die Dichtematrix des Ensembles in der Basis $\{|x+\rangle, |x-\rangle\}$ (die Eigenzustände des Spinoperators \hat{S}_x) an.
- (b) Berechnen Sie die Entropie des Ensembles und finden Sie den Wert von a, der die Entropie maximiert (0 < a < 1).

Hinweis: Spinoperatoren $\hat{S}_{\alpha} = (\hbar/2)\hat{\sigma}_{\alpha}$ ($\alpha = x$ oder z). Die Paulimatrizen $\hat{\sigma}_{\alpha}$ in der Basis $\{|z+\rangle, |z-\rangle\}$ sind

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

2. (Besetzungszahl-Darstellung)

Gegeben sei ein Ensemble von Systemen. Jedes System besteht aus N ununterscheidbaren Spin-1-Teilchen in einem magnetischen Feld B. Der Hamilton-operator eines Systems ist

$$\hat{H} = -\gamma \sum_{i=1}^{N} \hat{S}_z B.$$

Die Eigenzustände des Hamiltonoperators sind $|\alpha_1, \alpha_2, \dots, \alpha_N\rangle = \prod_{i=1}^N |\alpha_i\rangle$ mit Energie $E_{\alpha_1, \dots, \alpha_N} = -\hbar \gamma B \sum_{i=1}^N \alpha_i$. $|\alpha_i\rangle$ ist der Eigenzustand eines Spin-1-Teilchen mit Eigenenergie $\hbar \alpha_i$ ($\alpha_i = -1, 0$ oder 1).

- (a) Betrachten Sie den Fall dass jedes System aus N=2 Teilchen besteht. Schreiben Sie die alle mögliche Fockzustände $|N_{-1}, N_0, N_{+1}\rangle$ in der Basis $|\alpha_1, \alpha_2, \cdots, \alpha_N\rangle$ an und berechnen Sie die kanonische Zustandssumme $Z_c = \operatorname{Sp}(e^{-\beta \hat{H}})$. $(N_\alpha$ ist die Anzahl der Teilchen im Zustand α .)
- (b) Betrachten Sie den Fall dass jedes System aus N=3 Teilchen besteht. Schreiben Sie die alle mögliche Fockzustände $|N_{-1}, N_0, N_{+1}\rangle$ in der Basis $|\alpha_1, \alpha_2, \dots, \alpha_N\rangle$ an und berechnen Sie die kanonische Zustandssumme.
- (c) Berechnen Sie die kanonische Zustandssumme $Z_c = \operatorname{Sp}(e^{-\beta \hat{H}})$ wenn N > 3.
- (d) Nehmen Sie an, dass jedes System eine andere Teilchenzahl N hat und das chemische Potential die Bedingung $\mu < -|\hbar\gamma B|$ erfüllt. Berechnen Sie die großkanonische Zustandssumme $Z_{\rm GK} = {\rm Sp}(e^{-\beta(\hat{H}-\mu\hat{N})})$.