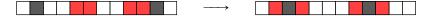
## 9 Stabilität

- (a) Ein beweglicher Kolben trennt ein isoliertes System in zwei ansonsten isolierte Teilvolumen  $V_1$  und  $V_2$  bei konstantem Gesamtvolumen  $V = V_1 + V_2$ . Der Kolben bewegt sich so lange, bis die gesamte innere Energie ein Minimum erreicht. Zeigen Sie, dass dann die Drücke in den beiden Teilvolumen gleich sind  $p = p_1 = p_2$ .
- (b) Mechanische Stabilität garantiert die Existenz eines Minimums in (a) für beliebige Stoffe in den beiden Teilvolumen. Zeigen Sie, dass daher die adiabatische Kompressibilität  $\kappa_S = -\frac{1}{V} \left( \frac{\partial V}{\partial p} \right)_{S.N}$  stets positiv ist.

## 10 Instabilität

Die Helmholtz Freie Energie des van der Waals Gases ist gegeben durch


$$F(T, V, N) = -k_{\rm B}T \log \left(\frac{(V - bN)^N}{N! \lambda^{3N}}\right) - \frac{aN^2}{V}$$

mit  $\lambda = 1/\sqrt{cT}$  und den Konstanten a, b, c.

- (a) Finden Sie die thermische und kalorische Zustandsgleichung abhängig von der Temperatur T und der Dichte  $\rho = N/V$  für große N, sodass  $\log(N!) \approx N \log N$ .
- (b) Zeigen Sie, dass es Bereiche von Zuständen (T, V, N) gibt, die mechanisch nicht stabil sind und finden Sie deren Grenzen im  $(T, \rho)$ -Diagram. Was passiert in diesen Bereichen?

## 11 Senke des Lebens

Wir modellieren die Reaktion von Kohlenstoff C und Sauerstoff  $O_2$  zu  $CO_2$  auf einer eindimensionalen Reihe an Feldern. Kohlenstoff- und Sauerstoffatome entsprechen jeweils schwarzen und roten Feldern, alle anderen sind weiß. Es seien N Kohlenstoffatome und 2N Sauerstoffatome auf insgesamt V Feldern verteilt.



- (a) Wie viele Kombinationsmöglichkeiten  $\Omega_{C+O_2}(V,N)$  gibt es, sodass alle roten Felder in Paaren auftreten? Die linke Seite der Skizze zeigt eine Möglichkeit für den Fall V=12, N=2. Hinweis: Platzieren Sie zuerst die roten Felder und dann erst die schwarzen.
- (b) Wie viele Kombinationsmöglichkeiten  $\Omega_{\text{CO}_2}(V, N)$  gibt es, sodass je zwei rote Felder und ein schwarzes Feld in der Reihenfolge rot-schwarz-rot vorkommen, wie auf der rechten Seite skizziert?
- (c) Wir definieren die Entropie in diesem Model durch  $S(V, N) = \log \Omega(V, N)$ . Zeigen Sie, dass der Entropieunterschied der Reaktion  $C + O_2 \longrightarrow CO_2$  für  $V \gg N \gg 1$  gegeben ist durch

$$\Delta S(V, N) = -N \left[ 1 + \log \left( \frac{V}{N} \right) \right].$$

Warum läuft die Reaktion unter Normalbedingungen trotzdem spontan ab?

## 12 Korrelation von Elektronen – Computeraufgabe

Die Aufenthaltswahrscheinlichkeitsdichte zweier Elektronen in einem eindimensionalen Stab der Länge 1 sei

$$p(x_1, x_2) = \frac{1}{C} \left[ \cos(\pi x_1) \cos(\pi x_2) \left( 1 - e^{-|x_1 - x_2|} \right) \right]^2$$

mit  $x_i \in [-1/2, 1/2]$  und der Normierungskonstante C.

(a) Finden Sie die Randverteilungen  $p_2(x_1)$  und  $p_1(x_2)$  für je ein Elektron.  $p_2(x_1)$  ist die Wahrscheinlichkeitsdichte, das erste Elektron am Ort  $x_1$  zu finden, unabhängig von der Position  $x_2$  des zweiten Elektrons:

$$p_2(x_1) = \int_{-1/2}^{1/2} dx_2 \, p(x_1, x_2), \quad p_1(x_2) = \int_{-1/2}^{1/2} dx_1 \, p(x_1, x_2).$$

- (b) Zeigen Sie, dass die Elektronen korreliert sind, also  $\sharp f(x_1), g(x_2): p(x_1, x_2) = f(x_1) g(x_2).$
- (c) Plotten Sie  $p(x_1, x_2)$  sowie  $p_2(x_1)$  und bestimmen Sie die Normierungskonstante C auf 8 signifikante Stellen. Hinweis: C = 0.01131...

Benutzen Sie ein Computer Tool Ihrer Wahl und hängen Sie Ihre Lösung mit allen Plots an die Ausarbeitung der restlichen Aufgaben an. Geben Sie nur **ein** pdf ab. Ihre pdf Abgabe muss ein Reproduzieren Ihrer Arbeit erlauben, das können aber auch etwa Screenshots eines online-Tools sein.