1. Übung zur Quantenmechanik II

Sommersemester 2009

ABGABE: <u>zu Dritt</u> (ausnahmsweise zu 1,2 oder 4 Personen), **Freitag**, **13.03.2009**, <u>zu Beginn</u> der Übungstunde (Tutorium)

NOTE: 50% Klausur, 50% Übungen

1. Wiederh. QMI: Komposition zweier Drehimpulse 1+1+1=3 Punkte

Der Hamiltonian eines Teilchens mit Spin $\frac{1}{2}$ und Masse m, das sich nur auf der Fläche einer Kugel mit Radius R bewegen kann, ist

$$H = \frac{L^2}{2mR^2} + \frac{2\omega}{\hbar} \mathbf{L} \cdot \mathbf{S}.$$

wobei ${\bf L}$ und ${\bf S}$ die Orbital- und Spin-Drehimpulsoperatoren sind. Der Anfangszustand bei t=0 wird von folgendem Spinor beschrieben:

$$\psi(t=0) = Y_{1.0}(\theta,\phi)\chi_{\uparrow}$$

wobei wir die Standardnotation $Y_{l,m}(\theta,\phi)$ für die Kugelflächenfunktionen, und $\chi_{\uparrow}=\begin{pmatrix} 1\\0 \end{pmatrix}$ für den up-Spin benutzen.

- a) Bestimme die Eigenbasis und die Eigenwerte von H.
- b) Berechne die Zeitentwicklung des Zustands $\psi(t)$.
- c) Berechne die Wahrscheinlichkeit als Funktion der Zeit, das Teilchen mit $S_z = -\frac{\hbar}{2}$ und mit $0 < \theta < \frac{\pi}{3}$ zu finden.

2. Zeitentwicklung eines Quantenzustands

2+1=3 Punkte

Betrachte ein Zweiniveau-Quantensystem, definiert durch die Basis $\{|+\rangle, |-\rangle\}$. Der Hamilton-operator läßt sich schreiben, als

$$H = \hbar\omega_1\Big(|+\rangle\langle+|+|-\rangle\langle-|\Big) + \hbar\omega_2\Big(|+\rangle\langle-|+|-\rangle\langle+|\Big),$$

wobei der zweite Term den Zustand von $|-\rangle$ nach $|+\rangle$ (und umgekehrt) flippt. Das System befindet sich zur Zeit t=0 im $|\psi(t=0)\rangle=|+\rangle$ Zustand.

a) Berechne die Zeitentwicklung des Zustands $|\psi(t)\rangle$, und die Mittelwerte der Energie des Systems als Funktion der Zeit.

b) Stelle nun das gleiche System in der Matrizendarstellung dar mit

$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 und $|-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

In dieser Darstellung wird folgender Operator definiert

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Berechne die Varianz des Operators A (d.h. $\langle A^2 \rangle - \langle A \rangle^2$) als Funktion der Zeit. Für welche Zeiten t > 0 ist der Zustand des Systems ein Eigenzustand des Operators A?

3. Schrödingergleichung in der Impulsdarstellung^v 1 Punkte

Ausgangspunkt ist die Schrödingergleichung in der Impulsdarstellung

$$i\hbar \frac{\partial}{\partial t}\phi(p,t) = \frac{p^2}{2m}\phi(p,t) + \int \frac{dp'}{2\pi\hbar}\tilde{V}(p-p')\phi(p',t)$$

wobei $\tilde{V}(p)$ die Fourier Transformation des Potentials V(x) ist.

Ersetze $\tilde{V}(p)$ durch V(x) via Fourier Transformation und leite folgende gleichwertige Form des Schrödingergleichung im Impulsraum ab:

$$i\hbar\frac{\partial}{\partial t}\phi(p,t) = \left[\frac{p^2}{2m} + V\left(i\hbar\frac{\partial}{\partial p}\right)\right]\phi(p,t).$$