8. Übung zur Quantenmechanik II

Sommersemester 2009

ABGABE: Freitag, 05.06.2009, zu Beginn der Übungstunde(Tutorium).

21. Symmetrisierende/Antisymmetrisierende Projektoren v

1+1=2 Punkte

Die symmetrisierenden und antisymmetrisierenden Operatoren für ein System N identischer Teilchen sind definiert als

$$S = \frac{1}{N!} \sum_{n} \mathcal{P}_{n}, \quad A = \frac{1}{N!} \sum_{n} \epsilon_{n} \mathcal{P}_{n},$$

wobei die Summe über alle möglichen Permutationen (definiert vom Pemutationsoperator \mathcal{P}) gemacht ist, und $\epsilon_n = \pm 1$ für gerade/ungerade Permutationen.

- a) Zeige, dass diese Operatorer Projektoren sind, d.h., $S^2 = S$, und $A^2 = A$.
- b) Zeige, dass die zwei Opertaoren "orthogonal" sind, d.h. $\mathcal{SA} = \mathcal{AS} = 0$.

22. Zwei und drei identische Teilchen

2+2+1=5 Punkte

Sei h_0 der Hamilton-Operator eines Teilchens. Dieser Hamilton-Operator wirkt nur auf die Bahnvariabeln und hat drei äquidistante Eigenzustände (z.B., mit Eigenenergien $0, \hbar\omega_0$, und $2\hbar\omega_0$, mit $\omega_0 > 0$), die in Bahnraum nicht entartet sind.

a) Betrachte ein System mit zwei unabhängingen Elektronen, dessen Hamiloton-Operator

$$H = h_0(1) + h_0(2)$$

ist. Finde die Eigenbasis dieses Systems und berechne die korrespondierenden Entartungen. Wiederhole die gleiche Rechung für ein System mit zwei unabhängingen Bosonen mit Spin 0.

- b) Wie werden sich die Ergebnisse ändern, wenn auch der folgenden Spin-Spin Wechselwirkungsbeitrag $(V = -J\vec{S}(1) \cdot \vec{S}(2))$ im Hamilton-Operator H berücksichtigt wird?
- c) Betrachte nun das gleiche Problem wie in a), aber für ein System von drei Bosonen mit spin
 0.

23. Lösung der (freien) Dirac und Weyl Gleichung 2+1+1=4 Punkte

- a) Berechne die explizite Lösung der Dirac Gleichung für Impuls \vec{p} und Energie E. (<u>Hinweis</u>: Versuche eine passende ebene Wellen Lösung zu finden. Den 4er-Spinor dieser Lösung kann man dann in zwei 2-Komponenten Spinoren ϕ und χ trennen.)
- b) Betrachte nun den masselosen Fall m=0 (Weyl Gleichung). Was ist der Unterschied zur allegemeinen Lösung von a)? Welche physikalischen Systeme realisieren den Fall der Weyl Gleichung?
- c) Bilde den gemeinsamen Operator \mathcal{CPT} , wobei $\mathcal{C}=i\gamma^2K$ (K ist die komplexe Konjugation), $\mathcal{P}=\gamma^0$ mit $\vec{r}\to -\vec{r}$, $\mathcal{T}=i\gamma^1\gamma^3K$ mit $t\to -t$, und vereinfache das Ergebnis soweit wie möglich. Interpretiere das Ergebnis physikalisch.