1. Plenum zur Quantentheorie II

Wintersemester 2019/2020

PLENUM: Donnerstag, 17.10.2019.

1. Zeitabhängiges Zwei-Niveau-Problem: Magnetische Spinresonanz

Betrachten Sie ein Spin- $\frac{1}{2}$ -Teilchen in einem magnetischen Feld $\mathbf{B}_0 = (0,0,B_z)$, das sich zum Zeitpunkt t=0 im Zustand $|\psi(t=0)\rangle = |\downarrow\rangle$ befindet. Als Quantisierungsachse wird die z-Achse angenommen, d.h. $|\uparrow\rangle$ ist der Eigenzustand des Operators S_z zum Eigenwert $+\frac{\hbar}{2}$. Zum Zeitpunkt t=0 wird nun ein zeitabhängiges magnetisches Feld

$$\mathbf{B}_r(t) = (B_r \cos(\omega t), B_r \sin(\omega t), 0)$$

eingeschaltet. Es soll dabei $B_r \ll B_z$ gelten, d.h. $\mathbf{B}_r(t)$ kann als kleine Störung von \mathbf{B}_0 aufgefasst werden.

[Info: Die eben beschriebene physikalische Situation findet bei Kern-Spin-Resonanz-Untersuchungen in der Technik und der Medizin (Kernspintomographie) eine praktische Anwendung. In diesem Fall liegt ω im Radiofrequenzbereich]

- a) Geben Sie den Hamliton-Operator $\hat{H}(t)$ für das oben beschriebene System mit gyromagnetische Faktor γ an. (Das magnetische Moment ist damit $\gamma \mathbf{S}$, also $\gamma = -g\mu_B/\hbar$).
- b) Berechnen Sie in erster Ordnung zeitabhängiger Störungstheorie die Wahrscheinlichkeit $P_{\uparrow}^{(1)}(t)$, dass sich der Spin zum Zeitpunkt t > 0 im Zustand $|\uparrow\rangle$ befindet.
- c) Berechnen Sie den **exakten Ausdruck** für die Wahrscheinlichkeit $P_{\uparrow}(t)$ und vergleichen Sie das Ergebnis mit dem Resultat aus Beispiel b) und mit den sogenannten Rabi Oszillationen (https://de.wikipedia.org/wiki/Rabi-Oszillation). Was fällt Ihnen auf?