Aufgabenblatt 6

1 Sudden Approximation

Gegeben sei ein Teilchen der Masse m, das sich für t<0 im Grundzustand $|0\rangle$ des harmonischen Oszillators mit Kreisfrequenz ω befindet. Zum Zeitpunkt t=0 ändert sich die Kreisfrequenz des Oszillators zu $\omega'=\frac{\omega}{\sqrt{2}}$. Berechnen Sie die exakten Wahrscheinlichkeiten für t>0, das Teilchen in den Zuständen $|n'=0\rangle$, $|n'=1\rangle$ und $|n'=2\rangle$ des geänderten harmonischen Oszillators zu finden.

1 Kreuz

2 Drei Elektronen ohne Spin

Wir betrachten drei Elektronen ohne Spin, sodass der Hilbertraum $\mathcal{H}=L^2\otimes L^2\otimes L^2$ durch ein Tensorprodukt aus dem Einteilchen-Hilbertraum L^2 (quadratintegrable Funktionen) geschrieben werden kann. Gegeben seien außerdem drei Ein-Elektron-Zustände $|\varphi_1\rangle, |\varphi_2\rangle, |\varphi_3\rangle \in L^2$, sodass z.B. $\langle \boldsymbol{r}|\varphi_1\rangle = \varphi_1(\boldsymbol{r})$ eine quadratintegrable Funktion ist.

- a) Warum ist $|\psi\rangle = |\varphi_1\varphi_2\varphi_3\rangle$ kein gültiger Zustand für drei Elektronen?
- b) Wenden Sie den Antisymmetrisierungsoperator (siehe Skript)

$$\hat{A} = \frac{1}{N!} \sum_{P} (-1)^{P} \hat{P} \tag{1}$$

auf den Zustand $|\psi\rangle$ aus (a) an. Was ergibt sich, wenn zwei der drei Ein-Elektron-Zustände $|\varphi_i\rangle$ identisch sind?

Hinweis: In der Literatur findet man folgende identische Notationen:

$$|\varphi_1 \varphi_2 \varphi_3\rangle = |\varphi_1, \varphi_2, \varphi_3\rangle = |\varphi_1\rangle |\varphi_2\rangle |\varphi_3\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle \otimes |\varphi_3\rangle \tag{2}$$

1 Kreuz

3 Hartree-Fock

- a) Begründen Sie, warum das Hartree-Fock Verfahren für ein Elektron exakt ist, ab zwei Elektronen jedoch nur noch eine Näherung darstellt.
- b) Für ein N-Teilchensystem (ohne Spin-Freiheitsgrad) ist die Hartree-Fock Lösung $|\psi\rangle$ (Slaterdeterminante aus Ein-Teilchen Wellenfunktionen $\varphi_i(\mathbf{r})$) gefunden worden. Drücken Sie den Erwartungswert der kinetischen Energie des Systems durch die Ein-Teilchen Wellenfunktionen aus.

1 Kreuz

4 Streutheorie

a) Zeigen Sie, dass die Schrödingergleichung eines Streuproblems durch den Ansatz

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$
(3)

im Grenzfall $r\to\infty$ gelöst wird. Für das Streupotential gelte: $rV(r)\to 0$ für $r\to\infty$. Nennen Sie ein Potential, dass diese Bedingung nicht erfüllt.

b) Bestimmen Sie die Streuamplitude $f(\theta)$ für eine Situation reiner s-Streuung, in der ein differentieller Wirkungsquerschnitt von $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}=a>0$ vorliegt.

(a)+(b)=2 Kreuze