Black Holes I - Exercise sheet 3

(3.1) Lorentz tensor gymnastics

Take the following Lorentz tensor and vector

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 0 & -1 \\
0 & -1 & 3 & 0 \\
0 & 3 & 2 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right) \quad k_{\mu}=\left(\begin{array}{c}
3 \\
1 \\
0 \\
-1
\end{array}\right)
$$

and calculate the following quantities
(a) $T^{\mu \nu}$ and $T^{\mu}{ }_{\mu}$
(b) k^{μ} and $k_{\mu} k^{\mu}$ (is k time-, light- or spacelike?)
(c) $T_{(\mu \nu)}=\frac{1}{2}\left(T_{\mu \nu}+T_{\nu \mu}\right)$ and $T_{[\mu \nu]}=\frac{1}{2}\left(T_{\mu \nu}-T_{\nu \mu}\right)$
(d) $T_{\mu \nu} k^{\nu}$ and $T_{\mu \nu} k^{\mu} k^{\nu}$
(3.2) Euler-Lagrange equations

Vary the following actions and write down the Euler-Lagrange equations of motion:
(a) $S=-\int d t\left[q^{i} \dot{p}_{i}+H\left(q^{i}, p_{i}\right)\right]$
(b) $S=\int d t\left[k_{1}(q) \ddot{q}+k_{2}(q) \dot{q}-V(q)\right]$
(c) $S=-\frac{1}{2} \int d^{n} x\left[\left(\partial_{i} \phi\right)\left(\partial_{j} \phi\right) \eta^{i j}-m^{2} \phi^{2}+\lambda \phi^{4}\right] \quad i, j=0,1, \ldots,(n-1)$
(d) $S=\int d t q$
(3.3) Minkowski metric in rotating coordinates

Start with the Minkowski line-element

$$
d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

and introduce "rotating coordinates"

$$
t^{\prime}=t \quad x^{\prime}=r \cos (\phi-\omega t) \quad y^{\prime}=r \sin (\phi-\omega t) \quad z^{\prime}=z
$$

where $r=\sqrt{x^{2}+y^{2}}$ and $\phi=\arctan (y / x)$. Find the components of the metric $g_{\mu \nu}$ and its inverse $g^{\mu \nu}$ in these coordinates, where

$$
d s^{2}=g_{\mu \nu} d x^{\prime \mu} d x^{\prime \nu}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}
$$

Hints:

- Remember the Einstein summation convention, i.e., to sum over contracted indices. Indices are raised with the inverse Minkowski metric $\eta^{\mu \nu}=\operatorname{diag}(-1,1,1,1)^{\mu \nu}$ and lowered with the Minkowski metric $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)_{\mu \nu}$.
- You may drop all boundary terms/total derivative terms and use partial integrations whenever a derivative acts on a variation (you may also keep boundary terms, and you will have made your first step towards understanding D-branes). And yes, the answer you get for the equations of motion in the case (d) is really strange...
- Remember that $d x^{\prime \mu}=d x^{\nu} \frac{\partial x^{\prime \mu}}{\partial x^{\nu}}$ and insert this into the last formula to extract $g_{\mu \nu}$. You get $g^{\mu \nu}$ e.g. from taking the matrix inverse of $g_{\mu \nu}$, but this is not the only possibility.

