Black Holes I - Exercise sheet 5

(5.1) Lie derivatives

Given the three vector fields

$$
\begin{aligned}
& L_{0}=\partial_{\phi} \\
& L_{1}=-\cos \phi \partial_{\theta}+\sin \phi \cot \theta \partial_{\phi} \\
& L_{2}=\sin \phi \partial_{\theta}+\cos \phi \cot \theta \partial_{\phi}
\end{aligned}
$$

calculate their Lie-brackets (commutators)

$$
\left[L_{i}, L_{j}\right]=f_{i j}^{k} L_{k}
$$

and determine the structure constants $f_{i j}{ }^{k}$. (If you know about Lie algebras try to find out which Lie algebra is generated by these three vector fields). Calculate also the Lie derivatives

$$
\mathcal{L}_{L_{i}}\left(g_{\alpha \beta}\right)=L_{i}^{\mu} \partial_{\mu} g_{\alpha \beta}+g_{\alpha \mu} \partial_{\beta} L_{i}^{\mu}+g_{\mu \beta} \partial_{\alpha} L_{i}^{\mu}
$$

of the metric of the unit sphere,

$$
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

along all three vector fields L_{i} given above. What is the meaning of your result?
(5.2) Coordinate transformation of Christoffels

Consider a general coordinate transformation $x^{\prime}=x^{\prime}(x)$ and calculate the transformation of the Christoffel symbols (of the second kind). Do they transform as a tensor?

(5.3) Riemann-tensor calculation

Take the line element

$$
d s^{2}=-d t^{2}+d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

and calculate all Riemann-tensor components.

These exercises are due on November 23rd 2009.

Hints:

- The definition of a commutator between two vector fields is $[A, B]=$ $A B-B A$. A simple example for illumination: Take the vector fields $\xi=x \partial_{x}+y \partial_{y}$ and $\zeta=c \partial_{x}$, with $c=$ const. Then their Lie bracket is $[\xi, \zeta]=x\left(\partial_{x} c\right) \partial_{x}+y\left(\partial_{y} c\right) \partial_{x}-c\left(\left(\partial_{x} x\right) \partial_{x}+\left(\partial_{x} y\right) \partial_{y}\right)=-c \partial_{x}=-\zeta$. Regarding the final question of this exercise: remember what we learned in the lectures about symmetries and Killing vectors.
- The definition of the Christoffel symbols of the second kind is

$$
\Gamma^{\alpha}{ }_{\beta \gamma}=\frac{1}{2} g^{\alpha \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
$$

Remember that the metric is a tensor and therefore transforms under coordinate change as any other tensor does - we have learned in the lectures how this works, so if you are not sure please consult your lecture notes.

- Either you calculate all Christoffels and insert into the definition of the Riemann-tensor, or you make a suitable coordinate transformation to a simpler set of coordinates, calculate the Riemann-tensor $R^{\alpha}{ }_{\beta \gamma \delta}$ in these simpler coordinates and use the fact that the Riemann-tensor transforms as a $(1,3)$ tensor.

