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Black Holes I — Exercise sheet 9

(9.1) Reissner–Nordström black hole and Robinson–Bertotti limit

Charged black holes with mass M and charge Q in four spacetime
dimensions are described by the Reissner–Nordström (RN) metric

ds2 = −K(r) dt2 +
dr2
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+ r2 dΩ2 K(r) = 1−

2M

r
+
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where dΩ2 = dθ2 + sin2θ dφ2.
(a) Can the RN metric emerge as vacuum solution in general relativity?
Why/why not?
(b) How many Killing horizons do exist for various values of M and Q?
Calculate their surface area A = 4πr2.
(c) For the case where at least one Killing horizon exists evaluate surface
gravity on the largest horizon. When does surface gravity vanish?
(d) In the extremal case M2 = Q2 take the near horizon limit of the
RN geometry and discuss what kind of geometry you obtain.

(9.2) Vaidya metric

The formation of black holes is a very complicated process. A simple
toy model assumes that there is only infalling matter and no outgoing
matter or radiation. Such scenarios are described by chiral matter and
chiral geometries, known as “Vaidya metric”

ds2 = 2dr dv −K(r, v) dv2 + r2 dΩ2 K(r, v) = 1−
2m(v)

r

where m(v) is a function of the light-like coordinate v ∈ (−∞,∞).
(a) Discuss physical problems that can arise when m(v) is not every-
where positive.
(b) Discuss physical problems that can arise when m(v) is not mono-
tonically increasing with v.
(c) Consider m(v) = M θ(v− v0) with some constant M (θ is the step-
function). Describe how the black hole is formed in this case: how does
spacetime look before v < v0 and how after v > v0? What does this
tell you about the infalling matter?
(d) In scenario (c) suppose that you are an observer at 0 < r < 2M ,
starting at v = v1 < v0. Can you escape to infinity or are you trapped
behind a black hole horizon?

(9.3) Euclidean Schwarzschild spacetime and Hawking temperature

Perform a Wick rotation t → iτ on the Schwarzschild spacetime. Take
the near horizon limit. Drop the 2-sphere part of the line-element and
focus on the 2-dimensional Euclidean geometry that remains. Under
which conditions is that geometry flat Euclidean space? What kind of
geometry do you obtain if the conditions are not met?
Christmas bonus: In quantum field theory typically the periodicity in Eu-

clidean time is associated with a characteristic temperature. Assume that

this holds also in the present case and calculate this temperature. Congrat-

ulations, you have just “derived” the Hawking-temperature. Merry X-mas!

These exercises are due on January 9th 2012.



Hints:

• Concerning (d): use the reparameterization r = M(1 + λ) and expand
in powers of λ keeping only the leading term in each expression. The
final result should be the Robinson–Bertotti metric, a direct product of
two maximally symmetric 2-dimensional spacetimes, one with constant
positive curvature and one with constant negative curvature — see also
exercises (8.1) and (8.2).

• Regarding (d): it may seem strange that being in flat spacetime can
nevertheless imply that you are hidden behind a horizon, but you can
easily understand this with our venerable fishy river analogy: suppose
that the river stands still initially, but at some point the current is
switched on. Then some fish in the river will be trapped behind the
point of no return, while others can escape, even though initially all
fish experience the same local “geometry”.

• There is not much that you have to calculate that we didn’t calculate
already, but a few things you should think through. It is particularly
useful to remind yourself how a cone is constructed: take flat Euclidean
(2-dimensional) space and remove a wedge, thereby creating a deficit
angle γ. Equivalently, you can demand that, in polar coordinates, the
azimuthal angle does not have periodicity 2π but rather 2π − γ, again
creating a deficit angle γ. Note that a cone is not the same as Euclidean
space: even though it is intrinsically flat, it does have a singularity at
the origin, usually referred to as “conical singularity”.


