Black Holes I - Exercise sheet 5

(5.1) Eddington-Finkelstein gauge

Take the Schwarzschild line-element in Schwarzschild gauge, viz.

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{\left(1-\frac{2 M}{r}\right)}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

and perform a coordinate transformation $v=t+f(r)$ with some suitable function f (which you have to determine) so that you obtain the Schwarzschild line-element in Eddington-Finkelstein gauge, viz.

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} r \mathrm{~d} v-\left(1-\frac{2 M}{r}\right) \mathrm{d} v^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

Is this line-element singular at $r=2 M$?
(5.2) Coordinate transformation of Christoffels

Consider a general coordinate transformation $x^{\prime}=x^{\prime}(x)$ and calculate the transformation of the Christoffel symbols (of the first kind). Do they transform as a tensor?
(5.3) Covariant derivative of a constant vector field

Given a smooth manifold in $n \geq 2$ dimensions equipped with an arbitrary metric of signature $(-,+, \ldots,+)$ consider a vector field v^{μ}, whose components in a certain coordinate system $\left(t, x_{1}, \ldots, x_{n-1}\right)$ are given by $v^{t}=1$ and $v^{\mu}=0$ otherwise. Thus, in these coordinates the vector field is a constant vector field and takes the simple form $v^{\mu}=(1,0, \ldots, 0)$. The main task of this exercise is to calculate the covariant derivative of this vector field, $\nabla_{\nu} v^{\mu}$. (When) is it true that $\nabla_{\nu} v^{\mu}=0$ for this vector field v^{μ} ?

These exercises are due on November $10^{\text {th }} 2015$.

Hints:

- This is perhaps the most efficient way to proceed: use the Ansatz $v=$ $t+f(r)$, derive the coordinate differential $\mathrm{d} v$ and calculate backwards by starting with the line-element in Eddington-Finkelstein gauge and ending with the line-element in Schwarzschild gauge. Concerning the last question: the metric obviously is finite at $r=2 M$; the only issue not completely obvious is whether it is invertible at $r=2 M$.
- The definition of the Christoffel symbols of the first kind is

$$
\Gamma_{\alpha \beta \gamma}=\frac{1}{2}\left(\partial_{\beta} g_{\alpha \gamma}+\partial_{\gamma} g_{\alpha \beta}-\partial_{\alpha} g_{\beta \gamma}\right)
$$

Remember that the metric is a tensor and therefore transforms under coordinate change as any other tensor does.

- This is a very short exercise (it should take less than a minute to write down the answers). However, be careful before answering the question - it may be tempting to give a short but incorrect answer.

