April 19th 2010

Daniel Grumiller

Black Holes II — Exercise sheet 5

(15.1) The *ab*-family of solutions

Consider 2D dilaton gravity models

$$S^{\rm 2DG} = \frac{1}{\kappa} \int \mathrm{d}^2 x \sqrt{-g} \left[XR - U(X)(\nabla X)^2 - 2V(X) \right]$$

with the following 2-parameter family of potentials:

$$U(X) = -\frac{a}{X}$$
 $V(X) = -\frac{1}{2}X^{a+b}$

Find all classical solutions of that theory in an Eddington–Finkelstein patch. Discuss what happens in the following three cases

(i)
$$a = 1 + b$$

(ii)
$$a = 1 - b$$

(iii) b = 0

What is the corresponding ground state geometry in each of these three special cases?

(15.2) Jackiw-Teitelboim, Katanaev-Volovich, CGHS et al.

Consider 2D dilaton gravity (see above) with the following potentials

- (i) $U = 0, V = -\Lambda X$ (Jackiw–Teitelboim)
- (ii) $U = \alpha, V = \beta X^2 \lambda$ (Katanaev–Volovich)
- (iii) $U = 0, V = -\frac{1}{2}$ (Callan–Giddings–Harvey–Strominger)
- (iv) $U = a, V = e^{\alpha X}$ (Liouville gravity)
- (v) $U = 0, V = \frac{1}{2}X(c X^2)$ (Kaluza–Klein reduced Chern–Simons)

Which of these models belong to the *ab*-family of exercise (15.1)? Which of these models have constant dilaton vacua [see exercise (15.3)]? Which of these models have a Minkowski ground state? How many Killing horizons are there for each model?

(15.3) Constant dilaton vacua

Take the equations of motion of 2D dilaton gravity and find their most general solution for the metric g and constant dilaton X. You have to assume that V(X) = 0 has at least one real zero in the range of definition of X. A suitable model for testing your results is the Kaluza– Klein reduced gravitational Chern–Simons model with potentials

$$U = 0$$
 $V = \frac{1}{2}X(c - X^2)$

Discuss the geometries of all constant dilaton vacua of this specific model.

These exercises are due on April 26th 2010.

Hints:

• This exercise is analog to the calculations we performed during the lectures. You can choose convenient values for the two integration constants appearing in the definitions

$$Q(X) = Q_0 + \int^X dy \, U(y) \qquad w(X) = w_0 - 2 \int^X dy \, V(y) e^{Q(y)}$$

Recall our general solution for the metric in Eddington–Finkelstein coordinates

$$ds^{2} = 2 du dr - K(r) du^{2}$$
 $K = e^{Q}w(1 - \frac{2m}{w})$

and for the dilaton

$$\partial_r X = e^{-Q}$$

The ground state solution arises if you set m = 0 (typically for the choice $w_0 = 0$).

- You get the number of Killing horizons simply by counting the number of real zeros in the Killing norm (squared) $K = e^Q w (1 \frac{2m}{w})$.
- Recall the equations of motion for 2D dilaton gravity from the lectures and exploit X = const. as early as possible. Exploit that the Ricci scalar R uniquely determines the Riemann tensor in 2D — if you know e.g. that R is constant then spacetime can only be deSitter, Minkowski or Anti-deSitter, depending on the sign of R.