Black Holes II - Exercise sheet 6

(16.1) Higher curvature theories of gravity

Show that a non-linear gravity theory in any dimension $D \geq 2$ with an action

$$
\tilde{S}=\frac{1}{\tilde{\kappa}} \int \mathrm{~d}^{D} x \sqrt{-g} R^{\tilde{\gamma}} \quad \tilde{\gamma} \neq 0,1
$$

is equivalent to the following class of dilaton gravity models:

$$
S=\frac{1}{\kappa} \int \mathrm{~d}^{D} x \sqrt{-g}\left[X R-X^{\gamma}\right]
$$

Derive a relation between the exponents γ and $\tilde{\gamma}$.
[Note: This result shows the equivalence of theories with $f(R)$ interactions to certain dilaton gravity models. The latter are also known as scalar-tensor theories, Jordan-Brans-Dicke theories or quintessence models. Both models have been used a lot in cosmology in the past 1.5 decades.]
(16.2) Field equations for spherically symmetric charged BHs

Requiring spherical symmetry at the level of the action reduces the Einstein-Hilbert-Maxwell action in 4D to a specific dilaton gravityMaxwell action in 2D (to reduce clutter we set $\kappa=1$):

$$
S^{\mathrm{RNBH}}=\int \mathrm{d}^{2} x \sqrt{-g}\left[X R+\frac{(\nabla X)^{2}}{2 X}+1\right]-\int \mathrm{d}^{2} x \sqrt{-g} X F_{\mu \nu} F^{\mu \nu}
$$

Derive the equations of motion for metric g, dilaton X and gauge-field A_{μ} (as usual $F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$). Solve for $F_{\mu \nu}$ using the field equations for A_{μ}. Interpret this result from a 4D perspective. What is the physical role of the constant of motion appearing in the solution of the field equations for A_{μ} ?
(16.3) Deriving the Reissner-Nordström solution

Take the equations of motion derived in (16.2) and find their most general solution for the metric g, non-constant dilaton X and gaugefield A_{μ}. Oxidize your result to 4D and write down the line-element in Schwarzschild coordinates. This line-element is the Reissner-Nordström solution. Finally, find all constant dilaton vacua. Are these vacuum geometries $\mathrm{AdS}_{2} \times S^{2}$, Minkowski $\times S^{2}$ or $\mathrm{dS}_{2} \times S^{2}$?

These exercises are due on May 3rd 2010.

Hints:

- Start with the dilaton gravity formulation and eliminate the dilaton X in terms of curvature R by means of its own equation of motion.
- The field equations for dilaton and metric can be derived essentially in the same way as for exercise (14.2) - see the hints there. For consistency your field equations in the limit $A_{\mu} \rightarrow 0$ must coincide with the ones derived in (14.2) for the special case $U(X)=-\frac{1}{2 X}$ and $V(X)=-\frac{1}{2}$. The field equation for the gauge field is straightforward. You should obtain

$$
\nabla_{\mu}\left(X F^{\mu \nu}\right)=\varepsilon^{\mu \nu} \partial_{\mu}(X f)=0
$$

where the first equality exploits the fact that any anti-symmetric tensor $F^{\mu \nu}$ in 2D can be written as $F^{\mu \nu}=\varepsilon^{\mu \nu} f$, where f is a scalar field and $\varepsilon^{\mu \nu}$ the ε-tensor. It is straightforward to solve the field equations above for f in terms of X and an integration constant. Regarding the 4D interpretation remember how the dilaton field X is related to the standard radial coordinate r and compare with the Coulomb solution.

- If you did not do exercise (16.2) then you need to know the field equations. The one for A_{μ} is provided in the hint above. The one for the dilaton reads

$$
R+\frac{(\nabla X)^{2}}{2 X^{2}}-\frac{\nabla^{2} X}{X}-F^{2}=0
$$

where $F^{2}=F_{\mu \nu} F^{\mu \nu}$. Variation with respect to the metric yields
$\nabla_{\mu} \nabla_{\nu} X-g_{\mu \nu} \nabla^{2} X-\frac{\left(\nabla_{\mu} X\right)\left(\nabla_{\nu} X\right)}{2 X}+g_{\mu \nu} \frac{(\nabla X)^{2}}{4 X}+\frac{1}{2} g_{\mu \nu}=-2 X T_{\mu \nu}$
with

$$
T_{\mu \nu}=F_{\mu \alpha} F_{\nu}{ }^{\alpha}-\frac{1}{4} g_{\mu \nu} F^{2}=-\frac{1}{2} g_{\mu \nu} f^{2}
$$

In the last equality I have used $F_{\mu \nu}=\varepsilon_{\mu \nu} f$ as well as the 2D identity $\varepsilon_{\mu \alpha} \varepsilon^{\alpha}{ }_{\nu}=g_{\mu \nu}$ (for Minkowski signature). Exploit now the fact that you can introduce an effective 2D dilaton gravity model with potentials

$$
U^{\mathrm{eff}}=U=-\frac{1}{2 X} \quad V^{\mathrm{eff}}=-\frac{1}{2}+\frac{q^{2}}{4 X}
$$

where q is the constant of motion appearing in the dual field strength $f=q /(2 X)$. This trick allows you to take advantage of the results derived in the lectures for general 2D dilaton gravity solutions with non-constant dilaton [see also the hint for (15.1)]. For the oxidation remember that the 4D line element is determined from the 2D metric $g_{\alpha \beta}$ and the dilaton X as follows:

$$
\mathrm{d} s_{(4)}^{2}=g_{\alpha \beta} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}+2 X \mathrm{~d} \Omega_{S^{2}}^{2}
$$

For the constant dilaton vacua use $X=$ const. as early as possible. Exploit that the Ricci scalar R uniquely determines the Riemann tensor in 2D - if you know e.g. that R is constant spacetime can only be deSitter, Minkowski or Anti-deSitter, depending on the sign of R.

