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Black Holes II — Exercise sheet 8

(18.1) Schwarzschild black hole and thermal reservoir

Couple the Schwarzschild black hole to a finite thermal reservoir of radi-
ation within the volume V at the Hawking temperature TH = 1/(8πM).
Show that for sufficiently small volumina V < Vc this system is ther-
modynamically stable, whereas for sufficiently large volumina V > Vc

it is unstable. Calculate Vc.

(18.2) Specific heat of Reissner–Nordström black hole

Calculate the Bekenstein–Hawking entropy SBH for the Reissner–Nordström
black hole and the specific heat C at fixed charge q,

C = TH
∂SBH

∂TH
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q=const.

where TH is the Hawking temperature. Discuss the thermodynamic
stability of the Reissner–Nordström black hole for

(i) q2 ≤ M2 < 4

3
q2

(ii) M2 > 4

3
q2

(18.3) Information loss problem in condensed matter physics

Consider a piece of coal at zero temperature and a laser beam (a pure
quantum state with some finite energy and entropy) in vacuum as initial
state. Provided the laser beam is directed toward the piece of coal it will
eventually be absorbed and scattered by the coal. In this (complicated)
process the coal will heat up a little bit. Suppose that the coal is a
nearly perfect black body. Then the final state will be the scattered
pure radiation and the outgoing thermal black-body radiation emitted
by the piece of coal. Thus, we appear to have an evolution of a pure
initial state into a final state that is not pure. Information is lost,
similar to what happens in the case of an evaporating black hole. How
is this information loss problem resolved in condensed matter physics?

These exercises are due on May 17th 2010.



Hints:

• For the finite reservoir of radiation you need the Stefan–Boltzmann law
Eres = σV T 4, where Eres is the energy of the radiation and σ = π2/15.
The relation between energy Eres and entropy Sres for a radiation gas
is given by Eres = 3

4
SresT . Use the Bekenstein–Hawking result for the

entropy, SBH = A/4, and show that the total entropy S = Sres +SBH is
extremized for a total energy of E = Eres +M if T = TH . A simple way
to extremize entropy under the given conditions is to add to the total
entropy the energy constraint multiplied with a Lagrange multiplier β.
Then vary that entropy with respect to the Lagrange multiplier and
with respect to the black hole mass, keeping fixed the total energy E:

δS = δ
(

Sres + SBH + β(Eres + M − E)
)

= 0

Prove now that the extremum is a maximum if and only if V < Vc,
where

Vc =
15

32π3 T 5

Consider what this result implies for thermodynamic (in-)stability.

• Recall that a thermodynamical system in the canonical ensemble is
unstable if the specific heat is negative. Calculate the critical value of
the mass in terms of charge when the specific heat changes its sign.
This can be a very short exercise, but if you take a less convenient
way to derive it it can also be a bit lengthy. Technically, a simple
way to derive the desired result is by means of the 2D dilaton gravity
formulation [see exercise (16.2)]. Use the results for U(X), V (X) given
in the hints of exercise (16.3) and exploit the result that we derived for
the specific heat in 2D dilaton gravity:

C = 2π
w′(X)

w′′(X)
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X=r2
+

/2

where r+ = M+
√

M2 − q2 is the locus of the event horizon in Schwarz-
schild coordinates and w(X) is related to the potentials U(X), V (X)
as defined in the hint of exercise (15.1).

• Think. Perhaps compare with exercise (8.3). Think again.


