May 17th 2010

Daniel Grumiller

Black Holes II — Exercise sheet 9

(19.1) Hamilton–Jacobi formulation

Recall the Hamilton–Jacobi formulation of mechanics by deriving the Hamilton–Jacobi equation for Hamilton's principal function S(q, t) for a given Hamiltonian H(q, p)

$$H\left(q,\frac{\partial S}{\partial q}\right) + \frac{\partial S}{\partial t} = 0$$

You can start either with the Hamilton formulation or the Lagrange formulation or the Newton formulation of mechanics.

(19.2) Holographic renormalization in quantum mechanics

Take the Hamiltonian of conformal quantum mechanics [V. de Alfaro, S. Fubini and G. Furlan, *Nuovo Cim.* A34 (1976) 569]

$$H(q,p) = \frac{p^2}{2} + \frac{1}{q^2}$$

for q > 0. Consider the variational principle for the action

$$I[q] = \int_{t_0}^{t_1} \mathrm{d}t \, \left(\frac{\dot{q}^2}{2} - \frac{1}{q^2}\right)$$

in the limit $t_1 \to \infty$ and holographically renormalize the action. Discuss what happens with the first variation of the action if you do *not* add a holographic counterterm.

(19.3) On-shell action of 2D dilaton gravity

Calculate the on-shell action for Euclidean 2D dilaton gravity with an asymptotic boundary at $X = \infty$, where X is the dilaton field.

These exercises are due on May 31st 2010.

Hints:

- Check any book on theoretical mechanics if you need a reminder. It is sufficient for this exercise to derive the Hamilton–Jacobi equation for the simplest case possible.
- Make the Ansatz for the improved action

$$\Gamma = \int_{t_0}^{t_1} \mathrm{d}t \left(\frac{\dot{q}^2}{2} - \frac{1}{q^2}\right) - S(q, t)\Big|_{t_0}^{t_1}$$

and postulate that the counterterm solves the Hamilton–Jacobi equation

$$H\left(q,\frac{\partial S}{\partial q}\right) + \frac{\partial S}{\partial t} = 0$$

Solve the Hamilton–Jacobi equation asymptotically (in the limit of large t_1) and keep the first term (if you want you may keep also the subleading term). If you need further hints consult 0711.4115 where exactly this example is treated.

• The full action for Euclidean 2D dilaton gravity is given by

$$\begin{split} \Gamma &= -\frac{1}{16\pi G} \, \int_{\mathcal{M}} d^2 x \, \sqrt{g} \, \left[X \, R - U(X) \, \left(\nabla X \right)^2 - 2 \, V(X) \right] \\ &- \frac{1}{8\pi G} \, \int_{\partial \mathcal{M}} dx \, \sqrt{\gamma} \, X \, K + \frac{1}{8\pi G} \, \int_{\partial \mathcal{M}} dx \, \sqrt{\gamma} \, \sqrt{w(X) \, e^{-Q(X)}} \, , \end{split}$$

with the standard definitions of the functions w and Q in terms of the potentials U and V [see hint of exercise (15.1)]. Recall that the solutions of the equations of motion are given by

$$X = X(r)$$
 $ds^{2} = \xi(r) d\tau^{2} + \frac{1}{\xi(r)} dr^{2}$

with

$$\partial_r X = e^{-Q(X)} \qquad \xi(X) = w(X)e^{Q(X)} \left(1 - \frac{2M}{w(X)}\right)$$

where M is the black hole mass. Since the boundary is an X = const. hypersurface, in the gauge above the determinant of the induced metric at the boundary is given by $\gamma = \xi(X)$, while the trace of extrinsic curvature is given by

$$K = \frac{1}{2\sqrt{\xi}} \frac{\partial \xi}{\partial r}$$

Note that you are allowed to exploit on-shell identities to simplify the calculation.