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Black Holes II — Exercise sheet 9

(19.1) First Law

The first law of thermodynamics states

dE(S, J) = T dS + ΩdJ

where the ΩdJ-term is a work term caused by the presence of an an-
gular potential Ω and angular momentum J . Show that for BTZ black
holes the first law of black hole mechanics is valid, which looks precisely
as the first law of thermodynamics.

(19.2) Second Law

The second law of black hole mechanics (the Hawking area theorem)
states that under “reasonable” assumptions1 the area A of a black hole
event horizon is a monotonically increasing function of time.

dA ≥ 0

By comparison with (18.2) A is proportional to entropy, which in turn
counts the number of black hole microstates. [See the note at the end
of the hints for exercise (18.2).] Let us now go back to 4 dimensions,
where qualitatively the same happens as in 3 dimensions. Calculate
A for a solar mass Schwarzschild black hole and provide an estimate
for the number of microstates of such a black hole. Discuss (either
colloquially or with formulas) what happens when you take a box filled
with photons of a certain temperature, energy and entropy and drop it
into the black hole.

(19.3) Third Law

The third law of black hole mechanics states that physical processes
that lead to vanishing surface gravity

κ → 0

are not possible in finite time. Discuss for a Schwarzschild black hole
how you could attempt to violate the third law and why such attempts
do not work. Generalize this discussion to Reissner–Nordström black
holes.

These exercises are due on May 31st 2012.

1Some of these assumptions, in particular any energy condition that one imposes, are

generically violated by quantum fields. But classically they are indeed reasonable.



Hints:

• The internal energy is expressed as a function of the extensive quan-
tities S and J . Use a double Legendre-transformation, E(S, J) =
F (T, Ω) + TS + ΩJ , to relate internal energy to the free energy given
in exercise (18.2). Then remember that M = L+ L̄ and J = L− L̄ and
use the relations between various quantities given in the hints for the
bonus part of exercise (18.2). At intermediate steps you could express
everything in terms of r±. If you do this you should get the interme-
diate result E = (r2+ + r2

−
)/8. At the end express r± in terms of S and

J . Check finally if it is true that ∂E/∂S = T and ∂E/∂J = Ω.

• Calculate A in natural units and recall how the number of microstates
scales with entropy. For the colloquial discussion compare with exercise
(8.3).

• Remember how surface gravity is related to mass and consider what
you would have to do with the mass of a Schwarzschild black hole
in order to make surface gravity vanish. For the Reissner–Nordström
case [see exercise (9.1) for the corresponding line-element] start with
a sub-extremal black hole |Q| < M and try to make it extremal by
dropping charged particles (which you are allowed to model for sim-
plicity as spherical shells with a certain mass and charge) into it. Note
that the particle only falls into the black hole if gravitational attrac-
tion overcomes the electrostatic repulsion. There are various ways
you can do this calculation (see e.g. the lecture notes by Townsend,
gr-qc/9707012, section 3); perhaps the simplest one is to use just
Coulomb’s law and Newton’s gravity law (though you must address
under which conditions you can trust the latter).

Historical note: together with the zeroth law (surface gravity is constant on
the event horizon of stationary black holes) the four laws of black hole me-
chanics are in one-to-one correspondence with the four laws of thermodynam-
ics. This is not a coincidence, but a rather deep result that relates black hole
physics and gravity with thermodynamics and statistical mechanics, and has
culminated in the holographic principle, realized explicitly in the AdS/CFT
correspondence and other gauge/gravity correspondences. A nice summary
of the four laws of black hole mechanics in four dimensions is provided in
J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole
mechanics,” Commun. Math. Phys. 31 (1973) 161. [free version: click here
or type http://projecteuclid.org/DPubS?service=UI&version=1.0

&verb=Display&handle=euclid.cmp/1103858973]
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