
Daniel Grumiller March 18th 2014

Black Holes II — Exercise sheet 3

(13.1) Schwarzschild black holes do not bifurcate

We saw last semester that a black hole binary system can lead to a single
black hole final state, after emitting an appreciable amount of gravita-
tional radiation in the inspiralling, merger and ringdown phases. The
endstate was a Kerr black hole with massM and angular momentum J .
We also saw that a Kerr black hole is unstable against superradiance,
which lowers its angular momentum and mass, while maintaining (or
increasing) its horizon area. The endstate of this chain of instabilities
is a Schwarzschild black hole. Prove that this endstate is classically
stable against bifurcation. In other words, show that a Schwarzschild
black hole cannot decay into two (Schwarzschild or Kerr) black holes.1

(13.2) Raychaudhuri equation for geodesic null congruences

Consider a congruence of null geodesics with tangent vector field ka

and deviation vector ηa (in 4 spacetime dimensions). Derive the analog
of the Raychaudhuri equation for the expansion θ. You should find

ka∇aθ = −
1

2
θ2 − σabσ

ab + ωabω
ab − Rabk

akb

Explain why there is a factor 1

2
instead of 1

3
.

(13.3) Prove Your Own Singularity Lemma

Given a geodesic null congruence with vanishing twist (ωab = 0) and
assuming the null energy condition (so that Rabk

akb ≥ 0) show the
following lemma: If the expansion is negative, θ = θ0 < 0, at some
point on a geodesic in the congruence then θ → −∞ along that geodesic
within the affine distance λ ≤ 2/|θ0|.

These exercises are due on March 25th 2014.

1Unless, of course, something provides sufficient energy to trigger such a process. But

when we use the word “decay” we usually mean “decay all by itself, without some external

trigger”. Sidenote: the black holes that we observe have a surrounding accretion disk,

which actually tends to bring the rotating black hole towards extremality; the processes

described in this exercise work in the other direction and apply to black holes in vacuum.



Hints:

• Use Hawking’s area theorem. Use energy conservation. Perhaps have
a look at exercises (10.2) and (10.3). This is a short exercise!

• Note that the orthogonality condition kaηa = 0 is not sufficient to
determine uniquely ηa since the displacement vector may now have a
component parallel to ka. Thus, the displacement vector ηa orthogonal
to the tangent vector ka specifies only a co-dimension 2 parameter
family of geodesics (in our 4 spacetime dimensions this is a 2-parameter
family). Therefore, you must specify one further condition to fix the
displacement vector ηa. It is convenient to introduce another null-
vector la with the properties lala = 0, laka = −1 and ka∇al

b = 0 (so if
ka is an ingoing null vector la is an outgoing one, with some convenient
normalization). Then you may impose the condition

ηala = 0

Instead of the “spatial metric” hab = gab + tatb introduce now the
projector

Pab = gab + kalb + lakb

that projects onto the required co-dimension 2 subspace of the tangent
space, P a

b
ηb = ηa. The tensor field Bab = ∇bka must also be projected,

B̂a
b := P a

c
Bc

dP
d

b

After showing that ka∇aη
b = B̂b

aη
a (remember that ka∇aη

b = ηa∇ak
b)

make the decomposition

B̂a
b =

1

2
θP a

b
+ σa

b + ωa
b

and think about the correctness of the factor 1

2
. The rest is completely

analog to the derivation of the Raychaudhuri equations for timelike
geodesic congruences. This is a long exercise!

• This lemma is the light-like analog of the lemma we proved for time-
like geodesic congruences during the lectures. You need the result for
the Raychaudhuri equation for geodesic null congruences spelled out in
exercise (13.2), and otherwise proceed analog to the lectures.


