Black Holes II - Alternative exercise sheet 4

(14.1) Second order field equations for 2D dilaton gravity

Derive the equations of motion by varying the 2D dilaton gravity action

$$
S^{2 \mathrm{DG}}=\frac{1}{\kappa} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

with respect to the dilaton field X and the metric $g_{\mu \nu}$ (U, V are arbitrary functions of X). You may neglect surface terms in this exercise. Compare your result with Eqs. (2.1) and (2.2) in hep-th/0703230.
(14.2) Constant dilaton vacua

Take the equations of motion of 2D dilaton gravity and find their most general solution for the metric g and constant dilaton X. You have to assume that $V(X)=0$ has at least one real zero in the range of definition of X. A suitable model for testing your results is the KaluzaKlein reduced gravitational Chern-Simons model with potentials

$$
U=0 \quad V=\frac{1}{2} X\left(c-X^{2}\right)
$$

Discuss the geometries of all constant dilaton vacua of this specific model.
(14.3) Jackiw-Teitelboim, Katanaev-Volovich, CGHS et al.

Consider 2D dilaton gravity (see above) with the following potentials
(i) $U=0, V=-\Lambda X$ (Jackiw-Teitelboim)
(ii) $U=\alpha, V=\beta X^{2}-\lambda$ (Katanaev-Volovich)
(iii) $U=0, V=-\frac{1}{2}$ (Callan-Giddings-Harvey-Strominger)
(iv) $U=a, V=e^{\alpha X}$ (Liouville gravity)
(v) $U=0, V=\frac{1}{2} X\left(c-X^{2}\right)$ (Kaluza-Klein reduced Chern-Simons)

Which of these models belong to the $a b$-family $U(X)=-\frac{a}{X}, V(X)=$ $-\frac{1}{2} X^{a+b}$? Which of these models have constant dilaton vacua [see exercise (14.2)]? Which of these models have a Minkowski ground state? How many Killing horizons are there for each model?

These alternative exercises are due on April $1^{\text {st }} 2014$ and can be combined with the other set of exercises (at most three exercises/person can be submitted).

Hints:

- The dilaton variation is straightforward [analog to exercise (3.2c)]. For the metric variation use the formula $\delta \sqrt{-g}=\frac{1}{2} \sqrt{-g} g^{\mu \nu} \delta g_{\mu \nu}$ (see previous semester). As we showed last semester (see also later this semester) the variation of the Ricci scalar yields

$$
\delta R=-R^{\mu \nu} \delta g_{\mu \nu}+\nabla^{\mu} \nabla^{\nu} \delta g_{\mu \nu}-g^{\mu \nu} \nabla^{2} \delta g_{\mu \nu}
$$

Exploit also the fact that the 2D Einstein tensor vanishes identically for any 2D metric, $R_{\mu \nu}=\frac{1}{2} g_{\mu \nu} R$. Be careful with signs!

- Recall the equations of motion for 2D dilaton gravity from the lectures and exploit $X=$ const. as early as possible. Exploit that the Ricci scalar R uniquely determines the Riemann tensor in 2D - if you know e.g. that R is constant then spacetime can only be de Sitter, Minkowski or Anti-de Sitter, depending on the sign of R.
- The first three questions should be straightforward to answer. You get the number of Killing horizons simply by counting the number of real zeros in the Killing norm (squared) $K=e^{Q} w\left(1-\frac{2 m}{w}\right)$. Recall that the two functions Q and w were defined as $Q(X)=Q_{0}+\int^{X} \mathrm{~d} y U(y)$ and $w(X)=w_{0}-2 \int^{X} \mathrm{~d} y V(y) e^{Q(y)}$, respectively.

