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Black Holes II — Alternative exercise sheet 5

(15.1) Field equations for spherically symmetric charged BHs
Requiring spherical symmetry at the level of the action reduces the
Einstein–Hilbert–Maxwell action in 4D to a specific dilaton gravity-
Maxwell action in 2D (to reduce clutter we set κ = 1):
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Derive the equations of motion for metric g, dilaton X and gauge-field
Aµ (as usual Fµν = ∇µAν−∇νAµ = ∂µAν−∂νAµ). Solve for Fµν using
the field equations for Aµ. Interpret this result from a 4D perspective.
What is the physical role of the constant of motion appearing in the
solution of the field equations for Aµ?

(15.2) Deriving the Reissner-Nordström solution
Take the equations of motion derived in alternative exercise (15.1) and
find their most general solution for the metric g, non-constant dilatonX
and gauge-field Aµ. Oxidize your result to 4D and write down the line-
element in Schwarzschild coordinates. This line-element is the Reissner-
Nordström solution. Finally, find all constant dilaton vacua. Are these
vacuum geometries AdS2 × S2, Minkowski×S2 or dS2 × S2?

(15.3) Asymptotic quasi-normal modes in 2D dilaton gravity
Take the dilaton gravity action from alternative exercise (14.1) and
couple it non-minimally to a massless scalar field φ
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with constant p. Using the monodromy approach by Motl and Neitzke
(gr-qc/0212096 and hep-th/0301173), the quasi-normal mode spec-
trum of this model was analyzed in gr-qc/0408042 in the limit of large
damping. For the complex frequency ω the asymptotic relation

eω/TH = −
(
1 + 2 cos (π(1− p))

)
was found, where TH is the Hawking temperature of the black hole.
Asymptotic means that the imaginary part of ω/TH is large and posi-
tive. Consider the minimally coupled case (p = 0) and the Schwarzschild
case (p = 1) and derive formulas for the real and imaginary parts of
ω/TH . Compare the p = 1 case with the (computer-) experimental
results for the Schwarzschild black hole by Nollert (Phys. Rev. D47
(1993) 5253) and Andersson (Class. Quant. Grav. L10 (1993) 61) who
found the asymptotic formula
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Does the 2D dilaton gravity formulation of the Schwarzschild black hole
lead to the correct asymptotic spectrum for quasi-normal modes?

These exercises are due on April 8th 2014.

http://arxiv.org/abs/gr-qc/0212096
http://arxiv.org/abs/hep-th/0301173
http://arxiv.org/abs/gr-qc/0408042


Hints:

• The field equations for dilaton and metric can be derived essentially in
the same way as for alternative exercise (14.1) — see the hints there.
For consistency your field equations in the limit Aµ → 0 must coincide
with the ones derived in the alternative exercise (14.1) for the special
case U(X) = − 1

2X
and V (X) = −1

2
. The field equation for the gauge

field is straightforward. You should obtain

∇µ (X F µν) = εµν ∂µ (X f) = 0

where the first equality exploits the fact that any anti-symmetric tensor
F µν in 2D can be written as F µν = εµν f , where f is a scalar field
and εµν the ε-tensor. It is straightforward to solve the field equations
above for f in terms of X and an integration constant. Regarding the
4D interpretation remember how the dilaton field X is related to the
standard radial coordinate r and compare with the Coulomb solution.

• If you did not do alternative exercise (15.1) then you need to know the
field equations. The one for Aµ is provided in the hint above. The one
for the dilaton reads
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In the last equality I have used Fµν = εµν f as well as the 2D identity
εµαε

α
ν = gµν (for Minkowski signature). Exploit now the fact that you

can introduce an effective 2D dilaton gravity model with potentials
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where q is the constant of motion appearing in the dual field strength
f = q/(2X). This trick allows you to take advantage of the results
derived in the lectures for general 2D dilaton gravity solutions with
non-constant dilaton. For the oxidation remember that the 4D line
element is determined from the 2D metric gαβ and the dilaton X as
follows:

ds2
(4) = gαβ dxα dxβ + 2X dΩ2

S2

For the constant dilaton vacua use X = const. as early as possible.
Exploit that the Ricci scalar R uniquely determines the Riemann tensor
in 2D — if you know e.g. that R is constant spacetime can only be
de Sitter, Minkowski or Anti-de Sitter, depending on the sign of R.

• What is TH in terms of M for the Schwarzschild black hole? (We
motivated this result last semester, see exercise (9.3), and we shall
derive it from scratch this semester.) Very short exercise!


