Übungsblatt 1

18.10.2012

1. Saklar-und Vektorpotential

(a) Zeige, dass die Gleichungen für die Potentiale $V(\vec{x},t), \vec{A}(\vec{x},t)$ ohne Eichbedingung folgende Form haben:

$$\vec{\nabla}^2 V + \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\epsilon_0} \tag{1}$$

$$\vec{\nabla}^2 \vec{A} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla} \left(\vec{\nabla} \cdot \vec{A} + \mu_0 \epsilon_0 \frac{\partial V}{\partial t} \right) = -\mu_0 \vec{J}$$
 (2)

(b) Wie sehen die Gleichungen in Coulomb- und Lorentzeichung aus?

2. Maxwellgleichungen in Materie

- (a) Zeige, dass sich die Maxwellgleichungen in Materie bei verschwindender Magnetisierung und Polarisation auf die Maxwellgleichungen im Vakuum reduzieren.
- (b) Zeige, dass die Maxwellgleichungen im Vakuum dieselben sind wie die Maxwellgleichungen in einem homogenen, linearen Material mit $\epsilon = \epsilon_0$ und $\mu = \mu_0$.

3. Energie und Impuls des elektromagnetischen Feldes

Das elektromagnetische Feld erfüllt folgende Kontinuitätsgleichung:

$$\vec{\nabla} \cdot \vec{S} = -\frac{\partial u}{\partial t} - \frac{\partial u_K}{\partial t},\tag{3}$$

wobei \vec{S} der Energiefluss (Poyntingvektor) ist, u die Feldenergiedichte und u_K die kinetische Energiedichte der Teilchen.

Bestimme für ein lineares Medium mit Materialeigenschaften ϵ und μ die Größe $\frac{\partial u_k}{\partial t}$ mithilfe der Definitionen von \vec{S} und u und unter der Bedingung, dass die Kontinuitätsgleichung erfüllt ist. Wie ist der Ergebnis zu interpretieren?