1 If the photon had mass

If the photon had a mass m, the electric field would remain $E = -\nabla \varphi$ but Poisson's equation would change to include a charactaristic length $L = \hbar/mc$:

$$\nabla^2 \varphi = -\frac{\rho}{\epsilon_0} + \frac{\varphi}{L^2}.$$

Experimental searches for m use a geometry first employed by Cavendish where two concentric conducting shells (radii $r_1 < r_2$) are maintained at a common potential V to ground by an infinitesimally thin connecting wire. When m = 0, all excess charge resides on the outside of the outer shell; no charge accumulates on the inner shell.

- (a) Use the substitution $\varphi(r) = u(r)/r$ to solve the generalized Poisson equation above in the space between the shells. Find also the electric field in this region.
- (b) Use the generalization of Gauss' law implied by the modified Poisson equation to find the charge Q on the inner shell.
- (c) Show that, to leading order when $L \to \infty$,

$$Q \approx \frac{2\pi\epsilon_0 V}{3} r_1 \left(\frac{r_2}{L}\right)^2 \left(1 + \frac{r_1}{r_2}\right).$$

2 Consequences of gauge choices

(a) Show by direct calculation that the Coulomb gauge condition $\nabla \cdot A = 0$ applies to

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \, \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}.$$

(b) Find the choice of gauge where a valid representation of the vector potential is

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{1}{4\pi} \int \mathrm{d}^3 r' \, \frac{\boldsymbol{B}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3}.$$

3 On the Aharonov–Bohm effect

- (a) Find the vector potential inside and outside a solenoid that generates a non-vanishing magnetic field $\boldsymbol{B} = B\hat{\boldsymbol{z}}$ only inside an infinite cylinder of radius R. Work in the Coulomb gauge.
- (b) Despite a vanishing magnetic field outside the solenoid, there are physical effects observable outside the solenoid. The Aharonov–Bohm effect occurs because the magnetic flux $\Phi_B = \oint d\mathbf{s} \cdot \mathbf{A}$ is non-zero along a closed path outside the solenoid, say, a circle of radius r > R which lies perpendicular to the solenoid axis. Show that the gauge transformation $\mathbf{A}' = \mathbf{A} + \nabla \chi$ with $\chi = -\Phi_B \phi/2\pi$ and where ϕ is the angle in cylindrical coordinates leads to identically zero vector potential outside the solenoid.
- (c) The result in part (b) suggests that we could eliminate the Aharonov–Bohm effect by a gauge transformation. Show, however, that the new magnetic field corresponds to a different physical problem, where

$$B' = B - \hat{z} \frac{\Phi_B}{2\pi\rho} \delta(\rho)$$

and where ρ denotes the radius in cylindrical cooridnates.