4 Toroidal and poloidal magnetic fields

It is true (but not obvious) that any vector field $\boldsymbol{V}(\boldsymbol{r})$ which satisfies $\boldsymbol{\nabla} \cdot \boldsymbol{V}(\boldsymbol{r})=0$ can be written uniquely in the form

$$
\boldsymbol{V}(\boldsymbol{r})=\boldsymbol{T}(\boldsymbol{r})+\boldsymbol{P}(\boldsymbol{r})=\boldsymbol{L} \psi(\boldsymbol{r})+\boldsymbol{\nabla} \times \boldsymbol{L} \gamma(\boldsymbol{r}),
$$

where $\boldsymbol{L}=-\mathrm{i} \boldsymbol{r} \times \boldsymbol{\nabla}$ is the angular momentum operator and $\psi(\boldsymbol{r})$ and $\gamma(\boldsymbol{r})$ are scalar fields. $\boldsymbol{T}(\boldsymbol{r})=\boldsymbol{L} \psi(\boldsymbol{r})$ is called a toroidal field and $\boldsymbol{P}(\boldsymbol{r})=\boldsymbol{\nabla} \times \boldsymbol{L} \gamma(\boldsymbol{r})$ is called a poloidal field. This decomposition is widely used in laboratory plasma physics.
(a) Confirm that $\boldsymbol{\nabla} \cdot \boldsymbol{V}(\boldsymbol{r})=0$.
(b) Show that a poloidal current density generates a toroidal magnetic field and vice versa.
(c) Suppose there is no current in a finite volume V. Show that $\nabla^{2} \boldsymbol{B}(\boldsymbol{r})=\mathbf{0}$ in V.
(d) Show that $\boldsymbol{A}(\boldsymbol{r})$ in the Coulomb gauge is purely toroidal in V when $\psi(\boldsymbol{r})$ and $\gamma(\boldsymbol{r})$ are chosen so that $\nabla^{2} \boldsymbol{B}(\boldsymbol{r})=\mathbf{0}$ in V.

5 The magnetic field of charge in uniform motion

Consider a charge distribution $\rho(\boldsymbol{r})$ in rigid, uniform motion with velocity \boldsymbol{v}.
(a) Show that the magnetic field produced by this system is $\boldsymbol{B}(\boldsymbol{r})=\left(\boldsymbol{v} / c^{2}\right) \times \boldsymbol{E}$, where $\boldsymbol{E}(\boldsymbol{r})$ is the electric field produced by $\rho(\boldsymbol{r})$ at rest.
(b) Use this result to find $\boldsymbol{B}(\boldsymbol{r})$ for an infinite line of current and an infinite sheet of current (both uniform) from the corresponding electrostatic problem.

6 The London equations for a Superconductor

In 1935, the brothers Fritz and Heinz London described superconductivity using a phenomenological constitutive equation where a length $\delta>0$ relates the current density to the vector potential in the Coulomb gauge:

$$
\boldsymbol{j}=-\frac{1}{\mu_{0} \delta^{2}} \boldsymbol{A}
$$

(a) Use the London constitutive equation to derive a differential equation for $\boldsymbol{B}(\boldsymbol{r})$.
(b) The London theory predicts that \boldsymbol{B} is not strictly zero at every point inside a superconductor. To see this, consider a slab of superconductor which is infinite in the x - and y-directions and lies between $z=-d$ and $z=d$. Compute $\boldsymbol{B}(z)$ inside the superconductor when the slab is placed in a static and uniform magnetic field $\boldsymbol{B}_{0}=B_{0} \hat{\boldsymbol{x}}$. Provide a sketch of $\boldsymbol{B}(z)$ in the slab.

7 Continuous creation

An early competitor of the Big Bang theory postulates the "continuous creation" of charged matter at a (very small) constant rate R at every point in space. In such a theory, the continuity equation is replaced by

$$
\boldsymbol{\nabla} \cdot \boldsymbol{j}+\frac{\partial \rho}{\partial t}=R
$$

(a) For this to be true, it is necessary to alter the source terms in the Maxwell equations. Show that it is sufficient to modify Gauss' law to

$$
\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho / \epsilon_{0}-\lambda \varphi
$$

and the Ampère-Maxwell law to

$$
\boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{j}+\frac{1}{c^{2}} \frac{\partial \boldsymbol{E}}{\partial t}-\lambda \boldsymbol{A}
$$

Here, λ is a constant and φ and \boldsymbol{A} are the usual scalar and vector potentials. Is this theory gauge invariant?
(b) Confirm that the modified Maxwell equations permit spherically symmetric solutions of the form

$$
\boldsymbol{A}(r, t)=\boldsymbol{r} f(r, t) \quad \text { and } \quad \varphi(\boldsymbol{r}, t)=\varphi_{0}
$$

where $f(r, t)$ is a scalar function and φ_{0} is a constant, and derive the resulting differential equation for $f(r, t)$.
(c) Show that the only non-singular solution to the partial differential equation satisfied by $f(r, t)$ is a constant.
(d) Show that the velocity of the charge created by this theory, $\boldsymbol{v}=\boldsymbol{j} / \rho$, is a linear function of r. This agrees with Hubble's famous observations.

8 Poincaré gauge

(a) Confirm that $\varphi(\boldsymbol{r})=-\boldsymbol{r} \cdot \boldsymbol{E}$ and $\boldsymbol{A}=-\frac{1}{2} \boldsymbol{r} \times \boldsymbol{B}$ are acceptable scalar and vector potentials, respectively, for a constant electric field \boldsymbol{E} and a constant magnetic field \boldsymbol{B}.
(b) By direct computation of $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ and $\boldsymbol{E}=-\boldsymbol{\nabla} \varphi-\partial \boldsymbol{A} / \partial t$, prove that the generalizations of the formulae in part (a) to arbitrary time-dependent fields are

$$
\varphi(\boldsymbol{r}, t)=-\boldsymbol{r} \cdot \int_{0}^{1} \mathrm{~d} \lambda \boldsymbol{E}(\lambda \boldsymbol{r}, t) \quad \boldsymbol{A}(\boldsymbol{r}, t)=-\int_{0}^{1} \mathrm{~d} \lambda \lambda \boldsymbol{r} \times \boldsymbol{B}(\lambda \boldsymbol{r}, t)
$$

Hint: Prove first that $\frac{\mathrm{d}}{\mathrm{d} \lambda} \boldsymbol{G}(\lambda \boldsymbol{r})=\frac{1}{\lambda}(\boldsymbol{r} \cdot \boldsymbol{\nabla}) \boldsymbol{G}(\lambda \boldsymbol{r})$ for any vector field \boldsymbol{G}.

9 Energy flow in a coaxial cable

A cable is made from two coaxial cylindrical shells. The outer shell has radius b and charge per unit length λ, and carries a longitudinal current I. The inner cylinder has radius $a<b$ and charge per unit length $-\lambda$, and carries the current I back in the opposite direction.
(a) Integrate the Poynting vector to find the rate at which energy flows through a cross section of the cable.
(b) Show that a resistor R connected between the cylinders dissipates the power calculated in (a).

