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4 Toroidal and poloidal magnetic fields

It is true (but not obvious) that any vector field V (r) which satisfies ∇ ·V (r) = 0 can be written
uniquely in the form

V (r) = T (r) + P (r) = Lψ(r) +∇×Lγ(r),

where L = −i r × ∇ is the angular momentum operator and ψ(r) and γ(r) are scalar fields.
T (r) = Lψ(r) is called a toroidal field and P (r) = ∇ × Lγ(r) is called a poloidal field. This
decomposition is widely used in laboratory plasma physics.

(a) Confirm that ∇ · V (r) = 0.

(b) Show that a poloidal current density generates a toroidal magnetic field and vice versa.

(c) Suppose there is no current in a finite volume V . Show that ∇2B(r) = 0 in V .

(d) Show that A(r) in the Coulomb gauge is purely toroidal in V when ψ(r) and γ(r) are chosen
so that ∇2B(r) = 0 in V .

5 The magnetic field of charge in uniform motion

Consider a charge distribution ρ(r) in rigid, uniform motion with velocity v.

(a) Show that the magnetic field produced by this system is B(r) = (v/c2)×E, where E(r) is
the electric field produced by ρ(r) at rest.

(b) Use this result to find B(r) for an infinite line of current and an infinite sheet of current
(both uniform) from the corresponding electrostatic problem.

6 The London equations for a Superconductor

In 1935, the brothers Fritz and Heinz London described superconductivity using a phenomenolo-
gical constitutive equation where a length δ > 0 relates the current density to the vector potential
in the Coulomb gauge:

j = − 1

µ0δ2
A

(a) Use the London constitutive equation to derive a differential equation for B(r).

(b) The London theory predicts thatB is not strictly zero at every point inside a superconductor.
To see this, consider a slab of superconductor which is infinite in the x- and y-directions and
lies between z = −d and z = d. Compute B(z) inside the superconductor when the slab is
placed in a static and uniform magnetic field B0 = B0x̂. Provide a sketch of B(z) in the
slab.
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7 Continuous creation

An early competitor of the Big Bang theory postulates the “continuous creation” of charged matter
at a (very small) constant rate R at every point in space. In such a theory, the continuity equation
is replaced by

∇ · j +
∂ρ

∂t
= R.

(a) For this to be true, it is necessary to alter the source terms in the Maxwell equations. Show
that it is sufficient to modify Gauss’ law to

∇ ·E = ρ/ε0 − λϕ

and the Ampère–Maxwell law to

∇×B = µ0j +
1

c2
∂E

∂t
− λA.

Here, λ is a constant and ϕ and A are the usual scalar and vector potentials. Is this theory
gauge invariant?

(b) Confirm that the modified Maxwell equations permit spherically symmetric solutions of the
form

A(r, t) = rf(r, t) and ϕ(r, t) = ϕ0

where f(r, t) is a scalar function and ϕ0 is a constant, and derive the resulting differential
equation for f(r, t).

(c) Show that the only non-singular solution to the partial differential equation satisfied by
f(r, t) is a constant.

(d) Show that the velocity of the charge created by this theory, v = j/ρ, is a linear function of
r. This agrees with Hubble’s famous observations.

8 Poincaré gauge

(a) Confirm that ϕ(r) = −r ·E and A = − 1
2r ×B are acceptable scalar and vector potentials,

respectively, for a constant electric field E and a constant magnetic field B.

(b) By direct computation of B = ∇×A and E = −∇ϕ−∂A/∂t, prove that the generalizations
of the formulae in part (a) to arbitrary time-dependent fields are

ϕ(r, t) = −r ·
∫ 1

0

dλE(λr, t) A(r, t) = −
∫ 1

0

dλλr ×B(λr, t).

Hint: Prove first that
d

dλ
G(λr) =

1

λ
(r ·∇)G(λr) for any vector field G.

9 Energy flow in a coaxial cable

A cable is made from two coaxial cylindrical shells. The outer shell has radius b and charge per
unit length λ, and carries a longitudinal current I. The inner cylinder has radius a < b and charge
per unit length −λ, and carries the current I back in the opposite direction.

(a) Integrate the Poynting vector to find the rate at which energy flows through a cross section
of the cable.

(b) Show that a resistor R connected between the cylinders dissipates the power calculated in
(a).
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