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10 No electromagnetic bullets

(a) Let f(ξ) be an arbitrary scalar function of the scalar variable ξ. The function f(z − ct) is a
traveling-wave solution of the one-dimensional wave equation[

∂2

∂z2
− 1

c2
∂2

∂t2

]
f(z − ct) = 0.

Show that there exist localized solutions, i.e, f(ξ) can be zero outside a finite interval of ξ.

(b) Let ψ(x, y, z− ct) be a solution of the three-dimensional wave equation. Prove that ψ cannot
be localized in the x, y, and z directions simultaneously.

11 Superposition and wave intensity

Let E = E1 + E2 be the electric field of the sum of two monochromatic plane waves propagating
in the z-direction. One wave has frequency ω1 and is elliptically polarized. The other wave has
frequency ω2 and is elliptically polarized in a different way than the first wave. The intensity I is
the time average of the Poynting vector over a time T that is much larger than any characteristic
time scale. Derive precise, quantitative conditions which relate the averaging time T to ω1 and ω2

so the wave intensities satisfy I = I1 + I2.

12 Photon spin for plane waves

(a) Show that the angular momentum of an electromagnetic field in empty space without sources
can be written in the form, partially in index notation

LEM = ε0

∫
d3r r × (E ×B) = ε0

∫
d3r Ek(r ×∇)Ak + ε0

∫
d3rE ×A = Lorbital + Lspin.

Note any requirements that the fields must satisfy at infinity. The last term is assigned to
Lspin because it is a contribution to the angular momentum that does not depend on the
“lever arm” r.

(b) Show that the proposed decomposition is not gauge invariant and therefore not physically
meaningful.

(c) Despite the foregoing, work in the Coulomb gauge and apply these formulae to a circularly
polarized plane wave with electric field

E± = E0
x̂± iŷ√

2
ei(kz−ωt).

Show that the time averages obey ±ωẑ ·〈Lspin〉 = 〈UEM〉, where UEM =
∫

d3r 1
2ε0
(
Re2(E)+

c2Re2(B)
)
. Interpret this formula writing 〈UEM〉 = ~ω.
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13 An evanescent wave in vacuum

The electric field of a wave propagating in vacuum is E = ŷE0 exp[i(hz − ωt)− κx].

(a) How are the real parameters h, κ, and ω related to one another?

(b) Find the associated magnetic field B.

(c) Under what conditions is the polarization of the magnetic field close to circular?

(d) Compute the time-averaged Poynting vector.

14 Linear momentum of a wave packet

Let the complex electric field of an electromagnetic wave packet be

E(r, t) =
1

(2π)3/2

∫
d3kE⊥(k) exp[i(k · r − ckt)].

(a) Show that the total linear momentum of the wave packet satisfies

cPEM =
ε0
2

∫
d3k k̂ |E⊥(k)|2.

(b) Produce an argument which shows that

UEM ≥ c |PEM|,

(c) When does equality hold in Part (b)?

15 Charged particle motion in a circularly polarized plane wave

A particle with charge q and mass m interacts with a circularly polarized plane wave in vacuum.
The electric field of the wave is E(z, t) = 2 Re{(x̂ + iŷ)E0 exp[i(kz − ωt)]}.

(a) Let v± = vx± ivy and Ω = 2qE0/mc. Show that the equations of motion for the components
of the particle’s velocity v can be written

dvz
dt

=
Ω

2

{
v+e+i(kz−ωt) + v−e−i(kz−ωt)

}
dv±
dt

= Ω (c− vz)e∓i(kz−ωt).

(b) Let l± = v±e±i(kz−ωt) ± icΩ/ω and show that

dvz
dt

=
Ω

2
(l+ + l−) = i

Ω

2ω

d

dt
(l+ − l−).

(c) Differentiate the equations in part (a) and establish that

d2vz
dt2

+
[
Ω2 + ω2

]
vz = ω2K,

where K is a real constant. Use the initial conditions v(0) = 0 and v′z(0) = 0 to evaluate K
and solve for vz(t). Describe the nature of the particle acceleration in the z-direction.
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