10 No electromagnetic bullets

(a) Let $f(\xi)$ be an arbitrary scalar function of the scalar variable ξ. The function $f(z-c t)$ is a traveling-wave solution of the one-dimensional wave equation

$$
\left[\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] f(z-c t)=0
$$

Show that there exist localized solutions, i.e, $f(\xi)$ can be zero outside a finite interval of ξ.
(b) Let $\psi(x, y, z-c t)$ be a solution of the three-dimensional wave equation. Prove that ψ cannot be localized in the x, y, and z directions simultaneously.

11 Superposition and wave intensity

Let $\boldsymbol{E}=\boldsymbol{E}_{1}+\boldsymbol{E}_{2}$ be the electric field of the sum of two monochromatic plane waves propagating in the z-direction. One wave has frequency ω_{1} and is elliptically polarized. The other wave has frequency ω_{2} and is elliptically polarized in a different way than the first wave. The intensity I is the time average of the Poynting vector over a time T that is much larger than any characteristic time scale. Derive precise, quantitative conditions which relate the averaging time T to ω_{1} and ω_{2} so the wave intensities satisfy $I=I_{1}+I_{2}$.

12 Photon spin for plane waves

(a) Show that the angular momentum of an electromagnetic field in empty space without sources can be written in the form, partially in index notation
$\boldsymbol{L}_{\mathrm{EM}}=\epsilon_{0} \int \mathrm{~d}^{3} r \boldsymbol{r} \times(\boldsymbol{E} \times \boldsymbol{B})=\epsilon_{0} \int \mathrm{~d}^{3} r E_{k}(\boldsymbol{r} \times \boldsymbol{\nabla}) A_{k}+\epsilon_{0} \int \mathrm{~d}^{3} r \boldsymbol{E} \times \boldsymbol{A}=\boldsymbol{L}_{\text {orbital }}+\boldsymbol{L}_{\text {spin }}$.
Note any requirements that the fields must satisfy at infinity. The last term is assigned to $\boldsymbol{L}_{\text {spin }}$ because it is a contribution to the angular momentum that does not depend on the "lever arm" \boldsymbol{r}.
(b) Show that the proposed decomposition is not gauge invariant and therefore not physically meaningful.
(c) Despite the foregoing, work in the Coulomb gauge and apply these formulae to a circularly polarized plane wave with electric field

$$
\boldsymbol{E}_{ \pm}=E_{0} \frac{\hat{\boldsymbol{x}} \pm \mathrm{i} \hat{\boldsymbol{y}}}{\sqrt{2}} \mathrm{e}^{\mathrm{i}(k z-\omega t)}
$$

Show that the time averages obey $\pm \omega \hat{\boldsymbol{z}} \cdot\left\langle\boldsymbol{L}_{\text {spin }}\right\rangle=\left\langle U_{\mathrm{EM}}\right\rangle$, where $U_{\mathrm{EM}}=\int \mathrm{d}^{3} r \frac{1}{2} \epsilon_{0}\left(\operatorname{Re}^{2}(\boldsymbol{E})+\right.$ $\left.c^{2} \operatorname{Re}^{2}(\boldsymbol{B})\right)$. Interpret this formula writing $\left\langle U_{\mathrm{EM}}\right\rangle=\hbar \omega$.

13 An evanescent wave in vacuum

The electric field of a wave propagating in vacuum is $\boldsymbol{E}=\hat{\boldsymbol{y}} E_{0} \exp [\mathrm{i}(h z-\omega t)-\kappa x]$.
(a) How are the real parameters h, κ, and ω related to one another?
(b) Find the associated magnetic field \boldsymbol{B}.
(c) Under what conditions is the polarization of the magnetic field close to circular?
(d) Compute the time-averaged Poynting vector.

14 Linear momentum of a wave packet

Let the complex electric field of an electromagnetic wave packet be

$$
\boldsymbol{E}(\boldsymbol{r}, t)=\frac{1}{(2 \pi)^{3 / 2}} \int \mathrm{~d}^{3} k \boldsymbol{E}_{\perp}(\boldsymbol{k}) \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-c k t)]
$$

(a) Show that the total linear momentum of the wave packet satisfies

$$
c \boldsymbol{P}_{\mathrm{EM}}=\frac{\epsilon_{0}}{2} \int \mathrm{~d}^{3} k \hat{\boldsymbol{k}}\left|\boldsymbol{E}_{\perp}(\boldsymbol{k})\right|^{2} .
$$

(b) Produce an argument which shows that

$$
U_{\mathrm{EM}} \geq c\left|\boldsymbol{P}_{\mathrm{EM}}\right|,
$$

(c) When does equality hold in Part (b)?

15 Charged particle motion in a circularly polarized plane wave

A particle with charge q and mass m interacts with a circularly polarized plane wave in vacuum. The electric field of the wave is $\boldsymbol{E}(z, t)=2 \operatorname{Re}\left\{(\hat{\boldsymbol{x}}+\mathrm{i} \hat{\boldsymbol{y}}) E_{0} \exp [\mathrm{i}(k z-\omega t)]\right\}$.
(a) Let $v_{ \pm}=v_{x} \pm \mathrm{i} v_{y}$ and $\Omega=2 q E_{0} / m c$. Show that the equations of motion for the components of the particle's velocity \boldsymbol{v} can be written

$$
\begin{aligned}
\frac{\mathrm{d} v_{z}}{\mathrm{~d} t} & =\frac{\Omega}{2}\left\{v_{+} \mathrm{e}^{+\mathrm{i}(k z-\omega t)}+v_{-} \mathrm{e}^{-\mathrm{i}(k z-\omega t)}\right\} \\
\frac{\mathrm{d} v_{ \pm}}{\mathrm{d} t} & =\Omega\left(c-v_{z}\right) \mathrm{e}^{\mathrm{Fi}(k z-\omega t)}
\end{aligned}
$$

(b) Let $l_{ \pm}=v_{ \pm} \mathrm{e}^{ \pm \mathrm{i}(k z-\omega t)} \pm \mathrm{i} c \Omega / \omega$ and show that

$$
\frac{\mathrm{d} v_{z}}{\mathrm{~d} t}=\frac{\Omega}{2}\left(l_{+}+l_{-}\right)=\mathrm{i} \frac{\Omega}{2 \omega} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(l_{+}-l_{-}\right)
$$

(c) Differentiate the equations in part (a) and establish that

$$
\frac{\mathrm{d}^{2} v_{z}}{\mathrm{~d} t^{2}}+\left[\Omega^{2}+\omega^{2}\right] v_{z}=\omega^{2} K
$$

where K is a real constant. Use the initial conditions $\boldsymbol{v}(0)=\mathbf{0}$ and $v_{z}^{\prime}(0)=0$ to evaluate K and solve for $v_{z}(t)$. Describe the nature of the particle acceleration in the z-direction.

